首页 > 系统 > Android > 正文

Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析

2019-12-12 05:30:24
字体:
来源:转载
供稿:网友

     在上一篇文章中,我们分析了Android系统进程间通信机制Binder中的Server在启动过程使用Service Manager的addService接口把自己添加到Service Manager守护过程中接受管理。在这一篇文章中,我们将深入到Binder驱动程序源代码去分析Client是如何通过Service Manager的getService接口中来获得Server远程接口的。Client只有获得了Server的远程接口之后,才能进一步调用Server提供的服务。

        这里,我们仍然是通过Android系统中自带的多媒体播放器为例子来说明Client是如何通过IServiceManager::getService接口来获得MediaPlayerService这个Server的远程接口的。假设计读者已经阅读过前面三篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,即假设Service Manager和MediaPlayerService已经启动完毕,Service Manager现在等待Client的请求。

        这里,我们要举例子说明的Client便是MediaPlayer了,它声明和实现在frameworks/base/include/media/mediaplayer.h和frameworks/base/media/libmedia/mediaplayer.cpp文件中。MediaPlayer继承于IMediaDeathNotifier类,这个类声明和实现在frameworks/base/include/media/IMediaDeathNotifier.h和frameworks/base/media/libmedia//IMediaDeathNotifier.cpp文件中,里面有一个静态成员函数getMeidaPlayerService,它通过IServiceManager::getService接口来获得MediaPlayerService的远程接口。

        在介绍IMediaDeathNotifier::getMeidaPlayerService函数之前,我们先了解一下这个函数的目标。看来前面浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路这篇文章的读者知道,我们在获取Service Manager远程接口时,最终是获得了一个BpServiceManager对象的IServiceManager接口。类似地,我们要获得MediaPlayerService的远程接口,实际上就是要获得一个称为BpMediaPlayerService对象的IMediaPlayerService接口。现在,我们就先来看一下BpMediaPlayerService的类图:

        从这个类图可以看到,BpMediaPlayerService继承于BpInterface<IMediaPlayerService>类,即BpMediaPlayerService继承了IMediaPlayerService类和BpRefBase类,这两个类又分别继续了RefBase类。BpRefBase类有一个成员变量mRemote,它的类型为IBinder,实际是一个BpBinder对象。BpBinder类使用了IPCThreadState类来与Binder驱动程序进行交互,而IPCThreadState类有一个成员变量mProcess,它的类型为ProcessState,IPCThreadState类借助ProcessState类来打开Binder设备文件/dev/binder,因此,它可以和Binder驱动程序进行交互。

       BpMediaPlayerService的构造函数有一个参数impl,它的类型为const sp<IBinder>&,从上面的描述中,这个实际上就是一个BpBinder对象。这样,要创建一个BpMediaPlayerService对象,首先就要有一个BpBinder对象。再来看BpBinder类的构造函数,它有一个参数handle,类型为int32_t,这个参数的意义就是请求MediaPlayerService这个远程接口的进程对MediaPlayerService这个Binder实体的引用了。因此,获取MediaPlayerService这个远程接口的本质问题就变为从Service Manager中获得MediaPlayerService的一个句柄了。

       现在,我们就来看一下IMediaDeathNotifier::getMeidaPlayerService的实现:

// establish binder interface to MediaPlayerService /*static*/const sp<IMediaPlayerService>& IMediaDeathNotifier::getMediaPlayerService() {  LOGV("getMediaPlayerService");  Mutex::Autolock _l(sServiceLock);  if (sMediaPlayerService.get() == 0) {   sp<IServiceManager> sm = defaultServiceManager();   sp<IBinder> binder;   do {    binder = sm->getService(String16("media.player"));    if (binder != 0) {     break;     }     LOGW("Media player service not published, waiting...");     usleep(500000); // 0.5 s   } while(true);    if (sDeathNotifier == NULL) {   sDeathNotifier = new DeathNotifier();  }  binder->linkToDeath(sDeathNotifier);  sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);  }  LOGE_IF(sMediaPlayerService == 0, "no media player service!?");  return sMediaPlayerService; } 

        函数首先通过defaultServiceManager函数来获得Service Manager的远程接口,实际上就是获得BpServiceManager的IServiceManager接口,具体可以参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。总的来说,这里的语句:

                     sp<IServiceManager> sm = defaultServiceManager();  

        相当于是:

                     sp<IServiceManager> sm = new BpServiceManager(new BpBinder(0));   

        这里的0表示Service Manager的远程接口的句柄值是0。

        接下去的while循环是通过sm->getService接口来不断尝试获得名称为“media.player”的Service,即MediaPlayerService。为什么要通过这无穷循环来得MediaPlayerService呢?因为这时候MediaPlayerService可能还没有启动起来,所以这里如果发现取回来的binder接口为NULL,就睡眠0.5秒,然后再尝试获取,这是获取Service接口的标准做法。

        我们来看一下BpServiceManager::getService的实现:

class BpServiceManager : public BpInterface<IServiceManager> {  ......   virtual sp<IBinder> getService(const String16& name) const  {   unsigned n;   for (n = 0; n < 5; n++){    sp<IBinder> svc = checkService(name);    if (svc != NULL) return svc;    LOGI("Waiting for service %s.../n", String8(name).string());    sleep(1);   }   return NULL;  }   virtual sp<IBinder> checkService( const String16& name) const  {   Parcel data, reply;   data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());   data.writeString16(name);   remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);   return reply.readStrongBinder();  }   ...... }; 

         BpServiceManager::getService通过BpServiceManager::checkService执行操作。

         在BpServiceManager::checkService中,首先是通过Parcel::writeInterfaceToken往data写入一个RPC头,这个我们在Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文已经介绍过了,就是写往data里面写入了一个整数和一个字符串“android.os.IServiceManager”, Service Manager来处理CHECK_SERVICE_TRANSACTION请求之前,会先验证一下这个RPC头,看看是否正确。接着再往data写入一个字符串name,这里就是“media.player”了。回忆一下Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析这篇文章,那里已经往Service Manager中注册了一个名字为“media.player”的MediaPlayerService。

        这里的remote()返回的是一个BpBinder,具体可以参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文,于是,就进行到BpBinder::transact函数了:

status_t BpBinder::transact(  uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) {  // Once a binder has died, it will never come back to life.  if (mAlive) {   status_t status = IPCThreadState::self()->transact(    mHandle, code, data, reply, flags);   if (status == DEAD_OBJECT) mAlive = 0;   return status;  }   return DEAD_OBJECT; } 

        这里的mHandle = 0,code = CHECK_SERVICE_TRANSACTION,flags = 0。

        这里再进入到IPCThread::transact函数中:

status_t IPCThreadState::transact(int32_t handle,          uint32_t code, const Parcel& data,          Parcel* reply, uint32_t flags) {  status_t err = data.errorCheck();   flags |= TF_ACCEPT_FDS;   IF_LOG_TRANSACTIONS() {   TextOutput::Bundle _b(alog);   alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "    << handle << " / code " << TypeCode(code) << ": "    << indent << data << dedent << endl;  }    if (err == NO_ERROR) {   LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),    (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");   err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);  }    if (err != NO_ERROR) {   if (reply) reply->setError(err);   return (mLastError = err);  }    if ((flags & TF_ONE_WAY) == 0) {   #if 0   if (code == 4) { // relayout    LOGI(">>>>>> CALLING transaction 4");   } else {    LOGI(">>>>>> CALLING transaction %d", code);   }   #endif   if (reply) {    err = waitForResponse(reply);   } else {    Parcel fakeReply;    err = waitForResponse(&fakeReply);   }   #if 0   if (code == 4) { // relayout    LOGI("<<<<<< RETURNING transaction 4");   } else {    LOGI("<<<<<< RETURNING transaction %d", code);   }   #endif      IF_LOG_TRANSACTIONS() {    TextOutput::Bundle _b(alog);    alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "     << handle << ": ";    if (reply) alog << indent << *reply << dedent << endl;    else alog << "(none requested)" << endl;   }  } else {   err = waitForResponse(NULL, NULL);  }    return err; } 

         首先是调用函数writeTransactionData写入将要传输的数据到IPCThreadState的成员变量mOut中去:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,  int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) {  binder_transaction_data tr;   tr.target.handle = handle;  tr.code = code;  tr.flags = binderFlags;    const status_t err = data.errorCheck();  if (err == NO_ERROR) {   tr.data_size = data.ipcDataSize();   tr.data.ptr.buffer = data.ipcData();   tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);   tr.data.ptr.offsets = data.ipcObjects();  } else if (statusBuffer) {   tr.flags |= TF_STATUS_CODE;   *statusBuffer = err;   tr.data_size = sizeof(status_t);   tr.data.ptr.buffer = statusBuffer;   tr.offsets_size = 0;   tr.data.ptr.offsets = NULL;  } else {   return (mLastError = err);  }    mOut.writeInt32(cmd);  mOut.write(&tr, sizeof(tr));    return NO_ERROR; } 

        结构体binder_transaction_data在上一篇文章Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析已经介绍过,这里不再累述,这个结构体是用来描述要传输的参数的内容的。这里着重描述一下将要传输的参数tr里面的内容,handle = 0,code =  CHECK_SERVICE_TRANSACTION,cmd = BC_TRANSACTION,data里面的数据分别为:

writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); writeString16("android.os.IServiceManager"); writeString16("media.player"); 

       这是在BpServiceManager::checkService函数里面写进去的,其中前两个是RPC头,Service Manager在收到这个请求时会验证这两个参数是否正确,这点前面也提到了。IPCThread->getStrictModePolicy默认返回0,STRICT_MODE_PENALTY_GATHER定义为:

// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER 
#define STRICT_MODE_PENALTY_GATHER 0x100  

       我们不关心这个参数的含义,这不会影响我们分析下面的源代码,有兴趣的读者可以研究一下。这里要注意的是,要传输的参数不包含有Binder对象,因此tr.offsets_size = 0。要传输的参数最后写入到IPCThreadState的成员变量mOut中,包括cmd和tr两个数据。

       回到IPCThread::transact函数中,由于(flags & TF_ONE_WAY) == 0为true,即这是一个同步请求,并且reply  != NULL,

最终调用:

                       err = waitForResponse(reply);  

       进入到waitForResponse函数中:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) {  int32_t cmd;  int32_t err;   while (1) {   if ((err=talkWithDriver()) < NO_ERROR) break;   err = mIn.errorCheck();   if (err < NO_ERROR) break;   if (mIn.dataAvail() == 0) continue;      cmd = mIn.readInt32();      IF_LOG_COMMANDS() {    alog << "Processing waitForResponse Command: "     << getReturnString(cmd) << endl;   }    switch (cmd) {   case BR_TRANSACTION_COMPLETE:    if (!reply && !acquireResult) goto finish;    break;      case BR_DEAD_REPLY:    err = DEAD_OBJECT;    goto finish;    case BR_FAILED_REPLY:    err = FAILED_TRANSACTION;    goto finish;      case BR_ACQUIRE_RESULT:    {     LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");     const int32_t result = mIn.readInt32();     if (!acquireResult) continue;     *acquireResult = result ? NO_ERROR : INVALID_OPERATION;    }    goto finish;      case BR_REPLY:    {     binder_transaction_data tr;     err = mIn.read(&tr, sizeof(tr));     LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");     if (err != NO_ERROR) goto finish;      if (reply) {      if ((tr.flags & TF_STATUS_CODE) == 0) {       reply->ipcSetDataReference(        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),        tr.data_size,        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),        tr.offsets_size/sizeof(size_t),        freeBuffer, this);      } else {       err = *static_cast<const status_t*>(tr.data.ptr.buffer);       freeBuffer(NULL,        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),        tr.data_size,        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),        tr.offsets_size/sizeof(size_t), this);      }     } else {      freeBuffer(NULL,       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),       tr.data_size,       reinterpret_cast<const size_t*>(tr.data.ptr.offsets),       tr.offsets_size/sizeof(size_t), this);      continue;     }    }    goto finish;    default:    err = executeCommand(cmd);    if (err != NO_ERROR) goto finish;    break;   }  }  finish:  if (err != NO_ERROR) {   if (acquireResult) *acquireResult = err;   if (reply) reply->setError(err);   mLastError = err;  }    return err; } 

        这个函数通过IPCThreadState::talkWithDriver与驱动程序进行交互:

status_t IPCThreadState::talkWithDriver(bool doReceive) {  LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened");   binder_write_read bwr;   // Is the read buffer empty?  const bool needRead = mIn.dataPosition() >= mIn.dataSize();   // We don't want to write anything if we are still reading  // from data left in the input buffer and the caller  // has requested to read the next data.  const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;   bwr.write_size = outAvail;  bwr.write_buffer = (long unsigned int)mOut.data();   // This is what we'll read.  if (doReceive && needRead) {   bwr.read_size = mIn.dataCapacity();   bwr.read_buffer = (long unsigned int)mIn.data();  } else {   bwr.read_size = 0;  }   ......   // Return immediately if there is nothing to do.  if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;   bwr.write_consumed = 0;  bwr.read_consumed = 0;  status_t err;  do {   ...... #if defined(HAVE_ANDROID_OS)   if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)    err = NO_ERROR;   else    err = -errno; #else   err = INVALID_OPERATION; #endif   ......  } while (err == -EINTR);   ......   if (err >= NO_ERROR) {   if (bwr.write_consumed > 0) {    if (bwr.write_consumed < (ssize_t)mOut.dataSize())     mOut.remove(0, bwr.write_consumed);    else     mOut.setDataSize(0);   }   if (bwr.read_consumed > 0) {    mIn.setDataSize(bwr.read_consumed);    mIn.setDataPosition(0);   }    ......    return NO_ERROR;  }   return err; } 

        这里的needRead为true,因此,bwr.read_size大于0;outAvail也大于0,因此,bwr.write_size也大于0。函数最后通过:

            ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

        进入到Binder驱动程序的binder_ioctl函数中。注意,这里的mProcess->mDriverFD是在我们前面调用defaultServiceManager函数获得Service Manager远程接口时,打开的设备文件/dev/binder的文件描述符,mProcess是IPCSThreadState的成员变量。

        Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_WRITE_READ命令相关的逻辑:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) {  int ret;  struct binder_proc *proc = filp->private_data;  struct binder_thread *thread;  unsigned int size = _IOC_SIZE(cmd);  void __user *ubuf = (void __user *)arg;   /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx/n", proc->pid, current->pid, cmd, arg);*/   ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);  if (ret)   return ret;   mutex_lock(&binder_lock);  thread = binder_get_thread(proc);  if (thread == NULL) {   ret = -ENOMEM;   goto err;  }   switch (cmd) {  case BINDER_WRITE_READ: {   struct binder_write_read bwr;   if (size != sizeof(struct binder_write_read)) {    ret = -EINVAL;    goto err;   }   if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {    ret = -EFAULT;    goto err;   }   if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)    printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx/n",    proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer);   if (bwr.write_size > 0) {    ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);    if (ret < 0) {     bwr.read_consumed = 0;     if (copy_to_user(ubuf, &bwr, sizeof(bwr)))      ret = -EFAULT;     goto err;    }   }   if (bwr.read_size > 0) {    ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);    if (!list_empty(&proc->todo))     wake_up_interruptible(&proc->wait);    if (ret < 0) {     if (copy_to_user(ubuf, &bwr, sizeof(bwr)))      ret = -EFAULT;     goto err;    }   }   if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)    printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld/n",    proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size);   if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {    ret = -EFAULT;    goto err;   }   break;        }  ......  default:   ret = -EINVAL;   goto err;  }  ret = 0; err:  ......  return ret; } 

        这里的filp->private_data的值是在defaultServiceManager函数创建ProcessState对象时,在ProcessState构造函数通过open文件操作函数打开设备文件/dev/binder时设置好的,它表示的是调用open函数打开设备文件/dev/binder的进程上下文信息,这里将它取出来保存在proc本地变量中。

        这里的thread本地变量表示当前线程上下文信息,通过binder_get_thread函数获得。在前面执行ProcessState构造函数时,也会通过ioctl文件操作函数进入到这个函数,那是第一次进入到binder_ioctl这里,因此,调用binder_get_thread时,表示当前进程上下文信息的proc变量还没有关于当前线程的上下文信息,因此,会为proc创建一个表示当前线程上下文信息的thread,会保存在proc->threads表示的红黑树结构中。这里调用binder_get_thread就可以直接从proc找到并返回了。

        进入到BINDER_WRITE_READ相关的逻辑。先看看BINDER_WRITE_READ的定义:

                  #define BINDER_WRITE_READ           _IOWR('b', 1, struct binder_write_read)  

        这里可以看出,BINDER_WRITE_READ命令的参数类型为struct binder_write_read:

struct binder_write_read {  signed long write_size; /* bytes to write */  signed long write_consumed; /* bytes consumed by driver */  unsigned long write_buffer;  signed long read_size; /* bytes to read */  signed long read_consumed; /* bytes consumed by driver */  unsigned long read_buffer; }; 

        这个结构体的含义可以参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。这里首先是通过copy_from_user函数把用户传进来的参数的内容拷贝到本地变量bwr中。

        从上面的调用过程,我们知道,这里bwr.write_size是大于0的,因此进入到binder_thread_write函数中,我们只关注BC_TRANSACTION相关的逻辑:

int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed) {  uint32_t cmd;  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   while (ptr < end && thread->return_error == BR_OK) {   if (get_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {    binder_stats.bc[_IOC_NR(cmd)]++;    proc->stats.bc[_IOC_NR(cmd)]++;    thread->stats.bc[_IOC_NR(cmd)]++;   }   switch (cmd) {   ......   case BC_TRANSACTION:   case BC_REPLY: {    struct binder_transaction_data tr;     if (copy_from_user(&tr, ptr, sizeof(tr)))     return -EFAULT;    ptr += sizeof(tr);    binder_transaction(proc, thread, &tr, cmd == BC_REPLY);    break;       }   ......   default:    printk(KERN_ERR "binder: %d:%d unknown command %d/n", proc->pid, thread->pid, cmd);    return -EINVAL;   }   *consumed = ptr - buffer;  }  return 0; } 

        这里再次把用户传出来的参数拷贝到本地变量tr中,tr的类型为struct binder_transaction_data,这个就是前面我们在IPCThreadState::writeTransactionData写入的内容了。

        接着进入到binder_transaction函数中,不相关的代码我们忽略掉:

static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) {  struct binder_transaction *t;  struct binder_work *tcomplete;  size_t *offp, *off_end;  struct binder_proc *target_proc;  struct binder_thread *target_thread = NULL;  struct binder_node *target_node = NULL;  struct list_head *target_list;  wait_queue_head_t *target_wait;  struct binder_transaction *in_reply_to = NULL;  struct binder_transaction_log_entry *e;  uint32_t return_error;   .......   if (reply) {   ......  } else {   if (tr->target.handle) {    ......   } else {    target_node = binder_context_mgr_node;    if (target_node == NULL) {     return_error = BR_DEAD_REPLY;     goto err_no_context_mgr_node;    }   }   ......   target_proc = target_node->proc;   if (target_proc == NULL) {    return_error = BR_DEAD_REPLY;    goto err_dead_binder;   }   if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) {    ......   }  }  if (target_thread) {   ......  } else {   target_list = &target_proc->todo;   target_wait = &target_proc->wait;  }  ......   /* TODO: reuse incoming transaction for reply */  t = kzalloc(sizeof(*t), GFP_KERNEL);  if (t == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_t_failed;  }  binder_stats.obj_created[BINDER_STAT_TRANSACTION]++;   tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);  if (tcomplete == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_tcomplete_failed;  }  binder_stats.obj_created[BINDER_STAT_TRANSACTION_COMPLETE]++;   t->debug_id = ++binder_last_id;    ......    if (!reply && !(tr->flags & TF_ONE_WAY))   t->from = thread;  else   t->from = NULL;  t->sender_euid = proc->tsk->cred->euid;  t->to_proc = target_proc;  t->to_thread = target_thread;  t->code = tr->code;  t->flags = tr->flags;  t->priority = task_nice(current);  t->buffer = binder_alloc_buf(target_proc, tr->data_size,   tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));  if (t->buffer == NULL) {   return_error = BR_FAILED_REPLY;   goto err_binder_alloc_buf_failed;  }  t->buffer->allow_user_free = 0;  t->buffer->debug_id = t->debug_id;  t->buffer->transaction = t;  t->buffer->target_node = target_node;  if (target_node)   binder_inc_node(target_node, 1, 0, NULL);   offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));   if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {   ......   return_error = BR_FAILED_REPLY;   goto err_copy_data_failed;  }   ......   if (reply) {   ......  } else if (!(t->flags & TF_ONE_WAY)) {   BUG_ON(t->buffer->async_transaction != 0);   t->need_reply = 1;   t->from_parent = thread->transaction_stack;   thread->transaction_stack = t;  } else {   ......  }   t->work.type = BINDER_WORK_TRANSACTION;  list_add_tail(&t->work.entry, target_list);  tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;  list_add_tail(&tcomplete->entry, &thread->todo);  if (target_wait)   wake_up_interruptible(target_wait);  return;   ...... } 

        注意,这里的参数reply = 0,表示这是一个BC_TRANSACTION命令。

        前面我们提到,传给驱动程序的handle值为0,即这里的tr->target.handle = 0,表示请求的目标Binder对象是Service Manager,因此有:

target_node = binder_context_mgr_node; target_proc = target_node->proc; target_list = &target_proc->todo; target_wait = &target_proc->wait; 

        其中binder_context_mgr_node是在Service Manager通知Binder驱动程序它是守护过程时创建的。

        接着创建一个待完成事项tcomplete,它的类型为struct binder_work,这是等一会要保存在当前线程的todo队列去的,表示当前线程有一个待完成的事务。紧跟着创建一个待处理事务t,它的类型为struct binder_transaction,这是等一会要存在到Service Manager的todo队列去的,表示Service Manager当前有一个事务需要处理。同时,这个待处理事务t也要存放在当前线程的待完成事务transaction_stack列表中去:

                       t->from_parent = thread->transaction_stack;  
                       thread->transaction_stack = t;  

        这样表明当前线程还有事务要处理。

        继续往下看,就是分别把tcomplete和t放在当前线程thread和Service Manager进程的todo队列去了:

t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); 

        最后,Service Manager有事情可做了,就要唤醒它了:

                     wake_up_interruptible(target_wait);  

        前面我们提到,此时Service Manager正在等待Client的请求,也就是Service Manager此时正在进入到Binder驱动程序的binder_thread_read函数中,并且休眠在target->wait上,具体参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。

        这里,我们暂时忽略Service Manager被唤醒之后的情景,继续看当前线程的执行。

        函数binder_transaction执行完成之后,就一路返回到binder_ioctl函数里去了。函数binder_ioctl从binder_thread_write函数调用处返回后,发现bwr.read_size大于0,于是就进入到binder_thread_read函数去了:

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed, int non_block) {  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   int ret = 0;  int wait_for_proc_work;   if (*consumed == 0) {   if (put_user(BR_NOOP, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);  }  retry:  wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);   ......    if (wait_for_proc_work) {   ......  } else {   if (non_block) {    if (!binder_has_thread_work(thread))     ret = -EAGAIN;   } else    ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  }   ......   while (1) {   uint32_t cmd;   struct binder_transaction_data tr;   struct binder_work *w;   struct binder_transaction *t = NULL;    if (!list_empty(&thread->todo))    w = list_first_entry(&thread->todo, struct binder_work, entry);   else if (!list_empty(&proc->todo) && wait_for_proc_work)    w = list_first_entry(&proc->todo, struct binder_work, entry);   else {    if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */     goto retry;    break;   }    if (end - ptr < sizeof(tr) + 4)    break;    switch (w->type) {   ......   case BINDER_WORK_TRANSACTION_COMPLETE: {    cmd = BR_TRANSACTION_COMPLETE;    if (put_user(cmd, (uint32_t __user *)ptr))     return -EFAULT;    ptr += sizeof(uint32_t);     binder_stat_br(proc, thread, cmd);    if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE)     printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE/n",     proc->pid, thread->pid);     list_del(&w->entry);    kfree(w);    binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++;             } break;   ......   }    if (!t)    continue;    ......  }  done:  ......  return 0; } 

       函数首先是写入一个操作码BR_NOOP到用户传进来的缓冲区中去。

      回忆一下上面的binder_transaction函数,这里的thread->transaction_stack != NULL,并且thread->todo也不为空,所以线程不会进入休眠状态。

      进入while循环中,首先是从thread->todo队列中取回待处理事项w,w的类型为BINDER_WORK_TRANSACTION_COMPLETE,这也是在binder_transaction函数里面设置的。对BINDER_WORK_TRANSACTION_COMPLETE的处理也很简单,只是把一个操作码BR_TRANSACTION_COMPLETE写回到用户传进来的缓冲区中去。这时候,用户传进来的缓冲区就包含两个操作码了,分别是BR_NOOP和BINDER_WORK_TRANSACTION_COMPLETE。

      binder_thread_read执行完之后,返回到binder_ioctl函数中,将操作结果写回到用户空间中去:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {  ret = -EFAULT;  goto err; } 

       最后就返回到IPCThreadState::talkWithDriver函数中了。

       IPCThreadState::talkWithDriver函数从下面语句:

                  ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

       返回后,首先是清空之前写入Binder驱动程序的内容:

if (bwr.write_consumed > 0) {   if (bwr.write_consumed < (ssize_t)mOut.dataSize())    mOut.remove(0, bwr.write_consumed);   else    mOut.setDataSize(0); } 

       接着是设置从Binder驱动程序读取的内容:

if (bwr.read_consumed > 0) {   mIn.setDataSize(bwr.read_consumed);   mIn.setDataPosition(0); } 

       然后就返回到IPCThreadState::waitForResponse去了。IPCThreadState::waitForResponse函数的处理也很简单,就是处理刚才从Binder驱动程序读入内容了。从前面的分析中,我们知道,从Binder驱动程序读入的内容就是两个整数了,分别是BR_NOOP和BR_TRANSACTION_COMPLETE。对BR_NOOP的处理很简单,正如它的名字所示,什么也不做;而对BR_TRANSACTION_COMPLETE的处理,就分情况了,如果这个请求是异步的,那个整个BC_TRANSACTION操作就完成了,如果这个请求是同步的,即要等待回复的,也就是reply不为空,那么还要继续通过IPCThreadState::talkWithDriver进入到Binder驱动程序中去等待BC_TRANSACTION操作的处理结果。

      这里属于后一种情况,于是再次通过IPCThreadState::talkWithDriver进入到Binder驱动程序的binder_ioctl函数中。不过这一次在binder_ioctl函数中,bwr.write_size等于0,而bwr.read_size大于0,于是再次进入到binder_thread_read函数中。这时候thread->transaction_stack仍然不为NULL,不过thread->todo队列已经为空了,因为前面我们已经处理过thread->todo队列的内容了,于是就通过下面语句:

                 ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

      进入休眠状态了,等待Service Manager的唤醒。

      现在,我们终于可以回到Service Manager被唤醒之后的过程了。前面我们说过,Service Manager此时正在binder_thread_read函数中休眠中:

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed, int non_block) {  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   int ret = 0;  int wait_for_proc_work;   if (*consumed == 0) {   if (put_user(BR_NOOP, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);  }  retry:  wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);   ......   if (wait_for_proc_work) {   ......   if (non_block) {    if (!binder_has_proc_work(proc, thread))     ret = -EAGAIN;   } else    ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));  } else {   ......  }    ......   while (1) {   uint32_t cmd;   struct binder_transaction_data tr;   struct binder_work *w;   struct binder_transaction *t = NULL;    if (!list_empty(&thread->todo))    w = list_first_entry(&thread->todo, struct binder_work, entry);   else if (!list_empty(&proc->todo) && wait_for_proc_work)    w = list_first_entry(&proc->todo, struct binder_work, entry);   else {    if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */     goto retry;    break;   }    if (end - ptr < sizeof(tr) + 4)    break;    switch (w->type) {   case BINDER_WORK_TRANSACTION: {    t = container_of(w, struct binder_transaction, work);           } break;   ......   }    if (!t)    continue;    BUG_ON(t->buffer == NULL);   if (t->buffer->target_node) {    struct binder_node *target_node = t->buffer->target_node;    tr.target.ptr = target_node->ptr;    tr.cookie = target_node->cookie;    t->saved_priority = task_nice(current);    if (t->priority < target_node->min_priority &&     !(t->flags & TF_ONE_WAY))     binder_set_nice(t->priority);    else if (!(t->flags & TF_ONE_WAY) ||     t->saved_priority > target_node->min_priority)     binder_set_nice(target_node->min_priority);    cmd = BR_TRANSACTION;   } else {    ......   }   tr.code = t->code;   tr.flags = t->flags;   tr.sender_euid = t->sender_euid;    if (t->from) {    struct task_struct *sender = t->from->proc->tsk;    tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);   } else {    ......   }    tr.data_size = t->buffer->data_size;   tr.offsets_size = t->buffer->offsets_size;   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));    if (put_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (copy_to_user(ptr, &tr, sizeof(tr)))    return -EFAULT;   ptr += sizeof(tr);    ......    list_del(&t->work.entry);   t->buffer->allow_user_free = 1;   if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {    t->to_parent = thread->transaction_stack;    t->to_thread = thread;    thread->transaction_stack = t;   } else {    ......   }   break;  }  done:   *consumed = ptr - buffer;  ......  return 0; } 

        这里就是从语句中唤醒了:

                       ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));  

        Service Manager唤醒过来看,继续往下执行,进入到while循环中。首先是从proc->todo中取回待处理事项w。这个事项w的类型是BINDER_WORK_TRANSACTION,这是上面调用binder_transaction的时候设置的,于是通过w得到待处理事务t:

                    t = container_of(w, struct binder_transaction, work);  

        接下来的内容,就把cmd和t->buffer的内容拷贝到用户传进来的缓冲区去了,这里就是Service Manager从用户空间传进来的缓冲区了:

if (put_user(cmd, (uint32_t __user *)ptr))  return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr)))  return -EFAULT; ptr += sizeof(tr); 

        注意,这里先是把t->buffer的内容拷贝到本地变量tr中,再拷贝到用户空间缓冲区去。关于t->buffer内容的拷贝,请参考Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文,它的一个关键地方是Binder驱动程序和Service Manager守护进程共享了同一个物理内存的内容,拷贝的只是这个物理内存在用户空间的虚拟地址回去:

                   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;  
                   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));  

       对于Binder驱动程序这次操作来说,这个事项就算是处理完了,就要从todo队列中删除了:

                    list_del(&t->work.entry);  

       紧接着,还不放删除这个事务,因为它还要等待Service Manager处理完成后,再进一步处理,因此,放在thread->transaction_stack队列中:

                   t->to_parent = thread->transaction_stack;  
                   t->to_thread = thread;  
                   thread->transaction_stack = t;  

       还要注意的一个地方是,上面写入的cmd = BR_TRANSACTION,告诉Service Manager守护进程,它要做什么事情,后面我们会看到相应的分析。

       这样,binder_thread_read函数就处理完了,回到binder_ioctl函数中,同样是操作结果写回到用户空间的缓冲区中去:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {  ret = -EFAULT;  goto err; } 

       最后,就返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数去了:

void binder_loop(struct binder_state *bs, binder_handler func) {  int res;  struct binder_write_read bwr;  unsigned readbuf[32];   bwr.write_size = 0;  bwr.write_consumed = 0;  bwr.write_buffer = 0;    readbuf[0] = BC_ENTER_LOOPER;  binder_write(bs, readbuf, sizeof(unsigned));   for (;;) {   bwr.read_size = sizeof(readbuf);   bwr.read_consumed = 0;   bwr.read_buffer = (unsigned) readbuf;    res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);    if (res < 0) {    LOGE("binder_loop: ioctl failed (%s)/n", strerror(errno));    break;   }    res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);   if (res == 0) {    LOGE("binder_loop: unexpected reply?!/n");    break;   }   if (res < 0) {    LOGE("binder_loop: io error %d %s/n", res, strerror(errno));    break;   }  } } 

        这里就是从下面的语句:

                      res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);  

        返回来了。接着就进入binder_parse函数处理从Binder驱动程序里面读取出来的数据:

int binder_parse(struct binder_state *bs, struct binder_io *bio,      uint32_t *ptr, uint32_t size, binder_handler func) {  int r = 1;  uint32_t *end = ptr + (size / 4);   while (ptr < end) {   uint32_t cmd = *ptr++;   switch(cmd) {   ......   case BR_TRANSACTION: {    struct binder_txn *txn = (void *) ptr;    ......    if (func) {     unsigned rdata[256/4];     struct binder_io msg;     struct binder_io reply;     int res;      bio_init(&reply, rdata, sizeof(rdata), 4);     bio_init_from_txn(&msg, txn);     res = func(bs, txn, &msg, &reply);     binder_send_reply(bs, &reply, txn->data, res);    }    ptr += sizeof(*txn) / sizeof(uint32_t);    break;         }   ......   default:    LOGE("parse: OOPS %d/n", cmd);    return -1;   }  }   return r; } 

         前面我们说过,Binder驱动程序写入到用户空间的缓冲区中的cmd为BR_TRANSACTION,因此,这里我们只关注BR_TRANSACTION相关的逻辑。

         这里用到的两个数据结构struct binder_txn和struct binder_io可以参考前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,这里就不复述了。

         接着往下看,函数调bio_init来初始化reply变量:

void bio_init(struct binder_io *bio, void *data,     uint32_t maxdata, uint32_t maxoffs) {  uint32_t n = maxoffs * sizeof(uint32_t);   if (n > maxdata) {   bio->flags = BIO_F_OVERFLOW;   bio->data_avail = 0;   bio->offs_avail = 0;   return;  }   bio->data = bio->data0 = data + n;  bio->offs = bio->offs0 = data;  bio->data_avail = maxdata - n;  bio->offs_avail = maxoffs;  bio->flags = 0; } 

        接着又调用bio_init_from_txn来初始化msg变量:

void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn) {  bio->data = bio->data0 = txn->data;  bio->offs = bio->offs0 = txn->offs;  bio->data_avail = txn->data_size;  bio->offs_avail = txn->offs_size / 4;  bio->flags = BIO_F_SHARED; } 

       最后,真正进行处理的函数是从参数中传进来的函数指针func,这里就是定义在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函数:

int svcmgr_handler(struct binder_state *bs,      struct binder_txn *txn,      struct binder_io *msg,      struct binder_io *reply) {  struct svcinfo *si;  uint16_t *s;  unsigned len;  void *ptr;  uint32_t strict_policy;  // LOGI("target=%p code=%d pid=%d uid=%d/n", //   txn->target, txn->code, txn->sender_pid, txn->sender_euid);   if (txn->target != svcmgr_handle)   return -1;   // Equivalent to Parcel::enforceInterface(), reading the RPC  // header with the strict mode policy mask and the interface name.  // Note that we ignore the strict_policy and don't propagate it  // further (since we do no outbound RPCs anyway).  strict_policy = bio_get_uint32(msg);  s = bio_get_string16(msg, &len);  if ((len != (sizeof(svcmgr_id) / 2)) ||   memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {   fprintf(stderr,"invalid id %s/n", str8(s));   return -1;  }   switch(txn->code) {  case SVC_MGR_GET_SERVICE:  case SVC_MGR_CHECK_SERVICE:   s = bio_get_string16(msg, &len);   ptr = do_find_service(bs, s, len);   if (!ptr)    break;   bio_put_ref(reply, ptr);   return 0;   ......  }  default:   LOGE("unknown code %d/n", txn->code);   return -1;  }   bio_put_uint32(reply, 0);  return 0; } 

        这里, Service Manager要处理的code是SVC_MGR_CHECK_SERVICE,这是在前面的BpServiceManager::checkService函数里面设置的。

        回忆一下,在BpServiceManager::checkService时,传给Binder驱动程序的参数为:

                  writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);   
                  writeString16("android.os.IServiceManager");    
                  writeString16("media.player");   
 

       这里的语句:

strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg, &len); s = bio_get_string16(msg, &len); 

       其中,会验证一下传进来的第二个参数,即"android.os.IServiceManager"是否正确,这个是验证RPC头,注释已经说得很清楚了。

       最后,就是调用do_find_service函数查找是存在名称为"media.player"的服务了。回忆一下前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,MediaPlayerService已经把一个名称为"media.player"的服务注册到Service Manager中,所以这里一定能找到。我们看看do_find_service这个函数:

void *do_find_service(struct binder_state *bs, uint16_t *s, unsigned len) {  struct svcinfo *si;  si = find_svc(s, len);  // LOGI("check_service('%s') ptr = %p/n", str8(s), si ? si->ptr : 0);  if (si && si->ptr) {   return si->ptr;  } else {   return 0;  } } 

       这里又调用了find_svc函数:

struct svcinfo *find_svc(uint16_t *s16, unsigned len) {  struct svcinfo *si;   for (si = svclist; si; si = si->next) {   if ((len == si->len) &&    !memcmp(s16, si->name, len * sizeof(uint16_t))) {    return si;   }  }  return 0; } 

       就是在svclist列表中查找对应名称的svcinfo了。

       然后返回到do_find_service函数中。回忆一下前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,这里的si->ptr就是指MediaPlayerService这个Binder实体在Service Manager进程中的句柄值了。

       回到svcmgr_handler函数中,调用bio_put_ref函数将这个Binder引用写回到reply参数。我们看看bio_put_ref的实现:

void bio_put_ref(struct binder_io *bio, void *ptr) {  struct binder_object *obj;   if (ptr)   obj = bio_alloc_obj(bio);  else   obj = bio_alloc(bio, sizeof(*obj));   if (!obj)   return;   obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  obj->type = BINDER_TYPE_HANDLE;  obj->pointer = ptr;  obj->cookie = 0; } 

        这里很简单,就是把一个类型为BINDER_TYPE_HANDLE的binder_object写入到reply缓冲区中去。这里的binder_object就是相当于是flat_binder_obj了,具体可以参考Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文。

        再回到svcmgr_handler函数中,最后,还写入一个0值到reply缓冲区中,表示操作结果码:

                  bio_put_uint32(reply, 0);  

        最后返回到binder_parse函数中,调用binder_send_reply函数将操作结果反馈给Binder驱动程序:

void binder_send_reply(struct binder_state *bs,       struct binder_io *reply,       void *buffer_to_free,       int status) {  struct {   uint32_t cmd_free;   void *buffer;   uint32_t cmd_reply;   struct binder_txn txn;  } __attribute__((packed)) data;   data.cmd_free = BC_FREE_BUFFER;  data.buffer = buffer_to_free;  data.cmd_reply = BC_REPLY;  data.txn.target = 0;  data.txn.cookie = 0;  data.txn.code = 0;  if (status) {   data.txn.flags = TF_STATUS_CODE;   data.txn.data_size = sizeof(int);   data.txn.offs_size = 0;   data.txn.data = &status;   data.txn.offs = 0;  } else {   data.txn.flags = 0;   data.txn.data_size = reply->data - reply->data0;   data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);   data.txn.data = reply->data0;   data.txn.offs = reply->offs0;  }  binder_write(bs, &data, sizeof(data)); } 

        注意,这里的status参数为0。从这里可以看出,binder_send_reply告诉Binder驱动程序执行BC_FREE_BUFFER和BC_REPLY命令,前者释放之前在binder_transaction分配的空间,地址为buffer_to_free,buffer_to_free这个地址是Binder驱动程序把自己在内核空间用的地址转换成用户空间地址再传给Service Manager的,所以Binder驱动程序拿到这个地址后,知道怎么样释放这个空间;后者告诉Binder驱动程序,它的SVC_MGR_CHECK_SERVICE操作已经完成了,要查询的服务的句柄值也是保存在data.txn.data,操作结果码是0,也是保存在data.txn.data中。

        再来看binder_write函数:

int binder_write(struct binder_state *bs, void *data, unsigned len) {  struct binder_write_read bwr;  int res;  bwr.write_size = len;  bwr.write_consumed = 0;  bwr.write_buffer = (unsigned) data;  bwr.read_size = 0;  bwr.read_consumed = 0;  bwr.read_buffer = 0;  res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);  if (res < 0) {   fprintf(stderr,"binder_write: ioctl failed (%s)/n",     strerror(errno));  }  return res; } 

        这里可以看出,只有写操作,没有读操作,即read_size为0。

        这里又是一个ioctl的BINDER_WRITE_READ操作。直入到驱动程序的binder_ioctl函数后,执行BINDER_WRITE_READ命令,这里就不累述了。

        最后,从binder_ioctl执行到binder_thread_write函数,首先是执行BC_FREE_BUFFER命令,这个命令的执行在前面一篇文章Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析已经介绍过了,这里就不再累述了。

        我们重点关注BC_REPLY命令的执行:

int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed) {  uint32_t cmd;  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   while (ptr < end && thread->return_error == BR_OK) {   if (get_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {    binder_stats.bc[_IOC_NR(cmd)]++;    proc->stats.bc[_IOC_NR(cmd)]++;    thread->stats.bc[_IOC_NR(cmd)]++;   }   switch (cmd) {   ......   case BC_TRANSACTION:   case BC_REPLY: {    struct binder_transaction_data tr;     if (copy_from_user(&tr, ptr, sizeof(tr)))     return -EFAULT;    ptr += sizeof(tr);    binder_transaction(proc, thread, &tr, cmd == BC_REPLY);    break;       }    ......   *consumed = ptr - buffer;  }  return 0; } 

        又再次进入到binder_transaction函数:

static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) {  struct binder_transaction *t;  struct binder_work *tcomplete;  size_t *offp, *off_end;  struct binder_proc *target_proc;  struct binder_thread *target_thread = NULL;  struct binder_node *target_node = NULL;  struct list_head *target_list;  wait_queue_head_t *target_wait;  struct binder_transaction *in_reply_to = NULL;  struct binder_transaction_log_entry *e;  uint32_t return_error;   ......   if (reply) {   in_reply_to = thread->transaction_stack;   if (in_reply_to == NULL) {    ......    return_error = BR_FAILED_REPLY;    goto err_empty_call_stack;   }   ......   thread->transaction_stack = in_reply_to->to_parent;   target_thread = in_reply_to->from;   ......   target_proc = target_thread->proc;  } else {   ......  }  if (target_thread) {   e->to_thread = target_thread->pid;   target_list = &target_thread->todo;   target_wait = &target_thread->wait;  } else {   ......  }     /* TODO: reuse incoming transaction for reply */  t = kzalloc(sizeof(*t), GFP_KERNEL);  if (t == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_t_failed;  }  binder_stats.obj_created[BINDER_STAT_TRANSACTION]++;   tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);  if (tcomplete == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_tcomplete_failed;  }  ......   if (!reply && !(tr->flags & TF_ONE_WAY))   t->from = thread;  else   t->from = NULL;  t->sender_euid = proc->tsk->cred->euid;  t->to_proc = target_proc;  t->to_thread = target_thread;  t->code = tr->code;  t->flags = tr->flags;  t->priority = task_nice(current);  t->buffer = binder_alloc_buf(target_proc, tr->data_size,   tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));  if (t->buffer == NULL) {   return_error = BR_FAILED_REPLY;   goto err_binder_alloc_buf_failed;  }  t->buffer->allow_user_free = 0;  t->buffer->debug_id = t->debug_id;  t->buffer->transaction = t;  t->buffer->target_node = target_node;  if (target_node)   binder_inc_node(target_node, 1, 0, NULL);   offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));   if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {   binder_user_error("binder: %d:%d got transaction with invalid "    "data ptr/n", proc->pid, thread->pid);   return_error = BR_FAILED_REPLY;   goto err_copy_data_failed;  }  if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {   binder_user_error("binder: %d:%d got transaction with invalid "    "offsets ptr/n", proc->pid, thread->pid);   return_error = BR_FAILED_REPLY;   goto err_copy_data_failed;  }  ......   off_end = (void *)offp + tr->offsets_size;  for (; offp < off_end; offp++) {   struct flat_binder_object *fp;   ......   fp = (struct flat_binder_object *)(t->buffer->data + *offp);   switch (fp->type) {   ......   case BINDER_TYPE_HANDLE:   case BINDER_TYPE_WEAK_HANDLE: {    struct binder_ref *ref = binder_get_ref(proc, fp->handle);    if (ref == NULL) {     ......     return_error = BR_FAILED_REPLY;     goto err_binder_get_ref_failed;    }    if (ref->node->proc == target_proc) {     ......    } else {     struct binder_ref *new_ref;     new_ref = binder_get_ref_for_node(target_proc, ref->node);     if (new_ref == NULL) {      return_error = BR_FAILED_REPLY;      goto err_binder_get_ref_for_node_failed;     }     fp->handle = new_ref->desc;     binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);     ......    }   } break;    ......   }  }   if (reply) {   BUG_ON(t->buffer->async_transaction != 0);   binder_pop_transaction(target_thread, in_reply_to);  } else if (!(t->flags & TF_ONE_WAY)) {   ......  } else {   ......  }   t->work.type = BINDER_WORK_TRANSACTION;  list_add_tail(&t->work.entry, target_list);  tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;  list_add_tail(&tcomplete->entry, &thread->todo);  if (target_wait)   wake_up_interruptible(target_wait);  return;   ...... } 

        这次进入binder_transaction函数的情形和上面介绍的binder_transaction函数的情形基本一致,只是这里的proc、thread和target_proc、target_thread调换了角色,这里的proc和thread指的是Service Manager进程,而target_proc和target_thread指的是刚才请求SVC_MGR_CHECK_SERVICE的进程。

        那么,这次是如何找到target_proc和target_thread呢。首先,我们注意到,这里的reply等于1,其次,上面我们提到,Binder驱动程序在唤醒Service Manager,告诉它有一个事务t要处理时,事务t虽然从Service Manager的todo队列中删除了,但是仍然保留在transaction_stack中。因此,这里可以从thread->transaction_stack找回这个等待回复的事务t,然后通过它找回target_proc和target_thread:

in_reply_to = thread->transaction_stack; target_thread = in_reply_to->from; target_list = &target_thread->todo;   target_wait = &target_thread->wait; 

       再接着往下看,由于Service Manager返回来了一个Binder引用,所以这里要处理一下,就是中间的for循环了。这是一个BINDER_TYPE_HANDLE类型的Binder引用,这是前面设置的。先把t->buffer->data的内容转换为一个struct flat_binder_object对象fp,这里的fp->handle值就是这个Service在Service Manager进程里面的引用值了。接通过调用binder_get_ref函数得到Binder引用对象struct binder_ref类型的对象ref:

                     struct binder_ref *ref = binder_get_ref(proc, fp->handle);  

       这里一定能找到,因为前面MediaPlayerService执行IServiceManager::addService的时候把自己添加到Service Manager的时候,会在Service Manager进程中创建这个Binder引用,然后把这个Binder引用的句柄值返回给Service Manager用户空间。

       这里面的ref->node->proc不等于target_proc,因为这个Binder实体是属于创建MediaPlayerService的进程的,而不是请求这个服务的远程接口的进程的,因此,这里调用binder_get_ref_for_node函数为这个Binder实体在target_proc创建一个引用:

struct binder_ref *new_ref; new_ref = binder_get_ref_for_node(target_proc, ref->node); 

       然后增加引用计数:

                   binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);  

     这样,返回数据中的Binder对象就处理完成了。注意,这里会把fp->handle的值改为在target_proc中的引用值:

                        fp->handle = new_ref->desc;  

     这里就相当于是把t->buffer->data里面的Binder对象的句柄值改写了。因为这是在另外一个不同的进程里面的Binder引用,所以句柄值当然要用新的了。这个值最终是要拷贝回target_proc进程的用户空间去的。

      再往下看:

if (reply) {   BUG_ON(t->buffer->async_transaction != 0);   binder_pop_transaction(target_thread, in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) {   ...... } else {   ...... } 

       这里reply等于1,执行binder_pop_transaction函数把当前事务in_reply_to从target_thread->transaction_stack队列中删掉,这是上次调用binder_transaction函数的时候设置的,现在不需要了,所以把它删掉。

       再往后的逻辑就跟前面执行binder_transaction函数时候一样了,这里不再介绍。最后的结果就是唤醒请求SVC_MGR_CHECK_SERVICE操作的线程:

                      if (target_wait)  
                                     wake_up_interruptible(target_wait);  

       这样,Service Manger回复调用SVC_MGR_CHECK_SERVICE请求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数等待下一个Client请求的到来。事实上,Service Manger回到binder_loop函数再次执行ioctl函数时候,又会再次进入到binder_thread_read函数。这时个会发现thread->todo不为空,这是因为刚才我们调用了:

                        list_add_tail(&tcomplete->entry, &thread->todo);  

       把一个工作项tcompelete放在了在thread->todo中,这个tcompelete的type为BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驱动程序会执行下面操作:

switch (w->type) { case BINDER_WORK_TRANSACTION_COMPLETE: {  cmd = BR_TRANSACTION_COMPLETE;  if (put_user(cmd, (uint32_t __user *)ptr))   return -EFAULT;  ptr += sizeof(uint32_t);   list_del(&w->entry);  kfree(w);    } break;  ...... } 

       binder_loop函数执行完这个ioctl调用后,才会在下一次调用ioctl进入到Binder驱动程序进入休眠状态,等待下一次Client的请求。

      上面讲到调用请求SVC_MGR_CHECK_SERVICE操作的线程被唤醒了,于是,重新执行binder_thread_read函数:

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed, int non_block) {  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   int ret = 0;  int wait_for_proc_work;   if (*consumed == 0) {   if (put_user(BR_NOOP, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);  }  retry:  wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);   ......   if (wait_for_proc_work) {   ......  } else {   if (non_block) {    if (!binder_has_thread_work(thread))     ret = -EAGAIN;   } else    ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  }    ......   while (1) {   uint32_t cmd;   struct binder_transaction_data tr;   struct binder_work *w;   struct binder_transaction *t = NULL;    if (!list_empty(&thread->todo))    w = list_first_entry(&thread->todo, struct binder_work, entry);   else if (!list_empty(&proc->todo) && wait_for_proc_work)    w = list_first_entry(&proc->todo, struct binder_work, entry);   else {    if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */     goto retry;    break;   }    ......    switch (w->type) {   case BINDER_WORK_TRANSACTION: {    t = container_of(w, struct binder_transaction, work);           } break;   ......   }    if (!t)    continue;    BUG_ON(t->buffer == NULL);   if (t->buffer->target_node) {    ......   } else {    tr.target.ptr = NULL;    tr.cookie = NULL;    cmd = BR_REPLY;   }   tr.code = t->code;   tr.flags = t->flags;   tr.sender_euid = t->sender_euid;    if (t->from) {    ......   } else {    tr.sender_pid = 0;   }    tr.data_size = t->buffer->data_size;   tr.offsets_size = t->buffer->offsets_size;   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));    if (put_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (copy_to_user(ptr, &tr, sizeof(tr)))    return -EFAULT;   ptr += sizeof(tr);    ......    list_del(&t->work.entry);   t->buffer->allow_user_free = 1;   if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {    ......   } else {    t->buffer->transaction = NULL;    kfree(t);    binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;   }   break;  }  done:  ......  return 0; } 

        就是从下面这个调用:

                  ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

       被唤醒过来了。在while循环中,从thread->todo得到w,w->type为BINDER_WORK_TRANSACTION,于是,得到t。从上面可以知道,Service Manager返回来了一个Binder引用和一个结果码0回来,写在t->buffer->data里面,现在把t->buffer->data加上proc->user_buffer_offset,得到用户空间地址,保存在tr.data.ptr.buffer里面,这样用户空间就可以访问这个数据了。由于cmd不等于BR_TRANSACTION,这时就可以把t删除掉了,因为以后都不需要用了。

       执行完这个函数后,就返回到binder_ioctl函数,执行下面语句,把数据返回给用户空间:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {  ret = -EFAULT;  goto err; } 

       接着返回到用户空间IPCThreadState::talkWithDriver函数,最后返回到IPCThreadState::waitForResponse函数,最终执行到下面语句:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) {  int32_t cmd;  int32_t err;   while (1) {   if ((err=talkWithDriver()) < NO_ERROR) break;      ......    cmd = mIn.readInt32();    ......    switch (cmd) {   ......   case BR_REPLY:    {     binder_transaction_data tr;     err = mIn.read(&tr, sizeof(tr));     LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");     if (err != NO_ERROR) goto finish;      if (reply) {      if ((tr.flags & TF_STATUS_CODE) == 0) {       reply->ipcSetDataReference(        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),        tr.data_size,        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),        tr.offsets_size/sizeof(size_t),        freeBuffer, this);      } else {       ......      }     } else {      ......     }    }    goto finish;    ......   }  }  finish:  ......  return err; } 

       注意,这里的tr.flags等于0,这个是在上面的binder_send_reply函数里设置的。接着就把结果保存在reply了:

reply->ipcSetDataReference(   reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),   tr.data_size,   reinterpret_cast<const size_t*>(tr.data.ptr.offsets),   tr.offsets_size/sizeof(size_t),   freeBuffer, this); 

       我们简单看一下Parcel::ipcSetDataReference函数的实现:

void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,  const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) {  freeDataNoInit();  mError = NO_ERROR;  mData = const_cast<uint8_t*>(data);  mDataSize = mDataCapacity = dataSize;  //LOGI("setDataReference Setting data size of %p to %lu (pid=%d)/n", this, mDataSize, getpid());  mDataPos = 0;  LOGV("setDataReference Setting data pos of %p to %d/n", this, mDataPos);  mObjects = const_cast<size_t*>(objects);  mObjectsSize = mObjectsCapacity = objectsCount;  mNextObjectHint = 0;  mOwner = relFunc;  mOwnerCookie = relCookie;  scanForFds(); } 

        上面提到,返回来的数据中有一个Binder引用,因此,这里的mObjectSize等于1,这个Binder引用对应的位置记录在mObjects成员变量中。

        从这里层层返回,最后回到BpServiceManager::checkService函数中:

virtual sp<IBinder> BpServiceManager::checkService( const String16& name) const {  Parcel data, reply;  data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());  data.writeString16(name);  remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);  return reply.readStrongBinder(); } 

        这里就是从:

                 remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);  

        返回来了。我们接着看一下reply.readStrongBinder函数的实现:

sp<IBinder> Parcel::readStrongBinder() const {  sp<IBinder> val;  unflatten_binder(ProcessState::self(), *this, &val);  return val; } 

        这里调用了unflatten_binder函数来构造一个Binder对象:

status_t unflatten_binder(const sp<ProcessState>& proc,  const Parcel& in, sp<IBinder>* out) {  const flat_binder_object* flat = in.readObject(false);    if (flat) {   switch (flat->type) {    case BINDER_TYPE_BINDER:     *out = static_cast<IBinder*>(flat->cookie);     return finish_unflatten_binder(NULL, *flat, in);    case BINDER_TYPE_HANDLE:     *out = proc->getStrongProxyForHandle(flat->handle);     return finish_unflatten_binder(      static_cast<BpBinder*>(out->get()), *flat, in);   }    }  return BAD_TYPE; } 

        这里的flat->type是BINDER_TYPE_HANDLE,因此调用ProcessState::getStrongProxyForHandle函数:

sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle) {  sp<IBinder> result;   AutoMutex _l(mLock);   handle_entry* e = lookupHandleLocked(handle);   if (e != NULL) {   // We need to create a new BpBinder if there isn't currently one, OR we   // are unable to acquire a weak reference on this current one. See comment   // in getWeakProxyForHandle() for more info about this.   IBinder* b = e->binder;   if (b == NULL || !e->refs->attemptIncWeak(this)) {    b = new BpBinder(handle);    e->binder = b;    if (b) e->refs = b->getWeakRefs();    result = b;   } else {    // This little bit of nastyness is to allow us to add a primary    // reference to the remote proxy when this team doesn't have one    // but another team is sending the handle to us.    result.force_set(b);    e->refs->decWeak(this);   }  }   return result; } 

       这里我们可以看到,ProcessState会把使用过的Binder远程接口(BpBinder)缓存起来,这样下次从Service Manager那里请求得到相同的句柄(Handle)时就可以直接返回这个Binder远程接口了,不用再创建一个出来。这里是第一次使用,因此,e->binder为空,于是创建了一个BpBinder对象:

b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b; 

       最后,函数返回到IMediaDeathNotifier::getMediaPlayerService这里,从这个语句返回:

                   binder = sm->getService(String16("media.player"));  

        这里,就相当于是:

                     binder = new BpBinder(handle);  

        最后,函数调用:

                   sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);  

        到了这里,我们可以参考一下前面一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager,就会知道,这里的interface_cast实际上最终调用了IMediaPlayerService::asInterface函数:

android::sp<IMediaPlayerService> IMediaPlayerService::asInterface(const android::sp<android::IBinder>& obj) {  android::sp<IServiceManager> intr;  if (obj != NULL) {      intr = static_cast<IMediaPlayerService*>(    obj->queryLocalInterface(IMediaPlayerService::descriptor).get());   if (intr == NULL) {    intr = new BpMediaPlayerService(obj);   }  }  return intr; } 

        这里的obj就是BpBinder,而BpBinder::queryLocalInterface返回NULL,因此就创建了一个BpMediaPlayerService对象:

                      intr = new BpMediaPlayerService(new BpBinder(handle));  

        因此,我们最终就得到了一个BpMediaPlayerService对象,达到我们最初的目标。

       有了这个BpMediaPlayerService这个远程接口之后,MediaPlayer就可以调用MediaPlayerService的服务了。

        至此,Android系统进程间通信(IPC)机制Binder中的Client如何通过Service Manager的getService函数获得Server远程接口的过程就分析完了,Binder机制的学习就暂告一段落了。

        不过,细心的读者可能会发现,我们这里介绍的Binder机制都是基于C/C++语言实现的,但是我们在编写应用程序都是基于Java语言的,那么,我们如何使用Java语言来使用系统的Binder机制来进行进程间通信呢?这就是下一篇文章要介绍的内容了,敬请关注。

        以上就是对Android IPC Binder Client获得Server 远程接口过程的源码分析,后续继续补充相关文章,谢谢大家对本站的支持!

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表