caffe程序是由C++语言写的,本身是不带数据可视化功能的。只能借助其他的库或者接口,如Python,MATLAB或者opencv。本文则选择Python接口。
Python环境不能单独配置,必须要先编译好caffe,才能编译Python环境。
Python环境配置说简单,实际操作起来却非常的复杂。此处强烈建议大家用anaconda这个集成工具进行安装。
一、下载工具Anaconda
下载anaconda之前,先用以下命令,查看一下安装的Python版本
#Python -V
然后,到https://www.continuum.io/downloads选择和自己Python版本匹配的anaconda。
二、安装
下载成功后,在终端执行(2.7版本):
#bash Anaconda2-4.3.0-linux-x86_64.sh
或者3.6版本:
#bash Anaconda3-4.3.0-Linux-x86_64.sh
安装过程中,会问你的安装路径,直接默认就可以。有个地方问你是否将anaconda安装路径加入到环境变量(.bashrc)中,这个一定要yes.
安装完成后,当前用户根目录,即/home/xxx/下会有个anaconda2的文件夹,里面就是安装好的内容。
输入conda list 就可以查询安装了哪些内容。
三、编译接口
首先,将caffe根目录下的Python文件夹加入到环境变量中
#sudo vi ~/.bashrc
在最后面加入
export PYTHONPATH=/home/xxx/caffe/python:$PYTHONPATH
保存退出,更新配置文件
#sudo ldconfig
然后修改编译配置文件Makefile.config。我的配置是:
## Refer to http://caffe.berkeleyvision.org/installation.html# Contributions simplifying and imPRoving our build system are welcome!# cuDNN acceleration switch (uncomment to build with cuDNN).USE_CUDNN := 1# CPU-only switch (uncomment to build without GPU support).# CPU_ONLY := 1# uncomment to disable IO dependencies and corresponding data layers# USE_OPENCV := 0# USE_LEVELDB := 0# USE_LMDB := 0# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)# You should not set this flag if you will be reading LMDBs with any# possibility of simultaneous read and write# ALLOW_LMDB_NOLOCK := 1# Uncomment if you're using OpenCV 3# OPENCV_VERSION := 3# To customize your choice of compiler, uncomment and set the following.# N.B. the default for Linux is g++ and the default for OSX is clang++# CUSTOM_CXX := g++# CUDA directory contains bin/ and lib/ directories that we need.CUDA_DIR := /usr/local/cuda# On Ubuntu 14.04, if cuda tools are installed via# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:# CUDA_DIR := /usr# CUDA architecture setting: going with all of them.# For CUDA < 6.0, comment the *_50 lines for compatibility.CUDA_ARCH := -gencode arch=compute_20,code=sm_20 / -gencode arch=compute_20,code=sm_21 / -gencode arch=compute_30,code=sm_30 / -gencode arch=compute_35,code=sm_35 / -gencode arch=compute_50,code=sm_50 / -gencode arch=compute_50,code=compute_50# BLAS choice:# atlas for ATLAS (default)# mkl for MKL# open for OpenBlasBLAS := atlas# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.# Leave commented to accept the defaults for your choice of BLAS# (which should work)!# BLAS_INCLUDE := /path/to/your/blas# BLAS_LIB := /path/to/your/blas# Homebrew puts openblas in a directory that is not on the standard search path# BLAS_INCLUDE := $(shell brew --prefix openblas)/include# BLAS_LIB := $(shell brew --prefix openblas)/lib# This is required only if you will compile the matlab interface.# MATLAB directory should contain the mex binary in /bin.# MATLAB_DIR := /usr/local# MATLAB_DIR := /applications/MATLAB_R2012b.app# NOTE: this is required only if you will compile the python interface.# We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE:=/usr/include/python2.7 /
/usr/lib/python2.7/dist-packages/numpy/core/include# Anaconda Python distribution is quite popular. Include path:# Verify anaconda location, sometimes it's in root.ANACONDA_HOME := $(HOME)/anaconda2PYTHON_INCLUDE := $(ANACONDA_HOME)/include / $(ANACONDA_HOME)/include/python2.7 / $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include /# We need to be able to find libpythonX.X.so or .dylib.# PYTHON_LIB := /usr/libPYTHON_LIB := $(ANACONDA_HOME)/lib# Homebrew installs numpy in a non standard path (keg only)# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include# PYTHON_LIB += $(shell brew --prefix numpy)/lib# Uncomment to support layers written in Python (will link against Python libs)WITH_PYTHON_LAYER := 1# Whatever else you find you need goes here.INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/includeLIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies# INCLUDE_DIRS += $(shell brew --prefix)/include# LIBRARY_DIRS += $(shell brew --prefix)/lib# Uncomment to use `pkg-config` to specify OpenCV library paths.# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)# USE_PKG_CONFIG := 1BUILD_DIR := buildDISTRIBUTE_DIR := distribute# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171# DEBUG := 1# The ID of the GPU that 'make runtest' will use to run unit tests.TEST_GPUID := 0# enable pretty build (comment to see full commands)Q ?= @
修改外编译配置文件后,最后进行编译:
#sudo make pycaffe
编译成功后,不能重复编译,否则会出现nothing to be done for 'pycaffe' 的错误。
如果需要重复编译,则先运行以下命令,清除之前的编译结果
#sudo make clean
然后继续编译,直到编译成功。
编译成功后这样显示
最终查看Python接口是否编译成功,进入Python环境,进行import操作,
#python
>>>import caffe
如果没有错误,则编译成功,如下图所示:
四、安装jupyter
如果安装了anaconda,jupyter notebook就已经自动装好,不需要再安装。
运行notebook:
#jupyter notebook
就可以在浏览器中打开notebook。
新闻热点
疑难解答