在IO编程一节中,我们已经知道,CPU的速度远远快于磁盘、网络等IO。在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件、发送网络数据时,就需要等待IO操作完成,才能继续进行下一步操作。这种情况称为同步IO。
在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行了。
因为一个IO操作就阻塞了当前线程,导致其他代码无法执行,所以我们必须使用多线程或者多进程来并发执行代码,为多个用户服务。每个用户都会分配一个线程,如果遇到IO导致线程被挂起,其他用户的线程不受影响。
多线程和多进程的模型虽然解决了并发问题,但是系统不能无上限地增加线程。由于系统切换线程的开销也很大,所以,一旦线程数量过多,CPU的时间就花在线程切换上了,真正运行代码的时间就少了,结果导致性能严重下降。
由于我们要解决的问题是CPU高速执行能力和IO设备的龟速严重不匹配,多线程和多进程只是解决这一问题的一种方法。
另一种解决IO问题的方法是异步IO。当代码需要执行一个耗时的IO操作时,它只发出IO指令,并不等待IO结果,然后就去执行其他代码了。一段时间后,当IO返回结果时,再通知CPU进行处理。
可以想象如果按普通顺序写出的代码实际上是没法完成异步IO的:
do_some_code()f = open('/path/to/file', 'r')r = f.read() # <== 线程停在此处等待IO操作结果# IO操作完成后线程才能继续执行:do_some_code(r)所以,同步IO模型的代码是无法实现异步IO模型的。
异步IO模型需要一个消息循环,在消息循环中,主线程不断地重复“读取消息-处理消息”这一过程:
loop = get_event_loop()while True: event = loop.get_event() PRocess_event(event)消息模型其实早在应用在桌面应用程序中了。一个GUI程序的主线程就负责不停地读取消息并处理消息。所有的键盘、鼠标等消息都被发送到GUI程序的消息队列中,然后由GUI程序的主线程处理。
由于GUI线程处理键盘、鼠标等消息的速度非常快,所以用户感觉不到延迟。某些时候,GUI线程在一个消息处理的过程中遇到问题导致一次消息处理时间过长,此时,用户会感觉到整个GUI程序停止响应了,敲键盘、点鼠标都没有反应。这种情况说明在消息模型中,处理一个消息必须非常迅速,否则,主线程将无法及时处理消息队列中的其他消息,导致程序看上去停止响应。
消息模型是如何解决同步IO必须等待IO操作这一问题的呢?当遇到IO操作时,代码只负责发出IO请求,不等待IO结果,然后直接结束本轮消息处理,进入下一轮消息处理过程。当IO操作完成后,将收到一条“IO完成”的消息,处理该消息时就可以直接获取IO操作结果。
在“发出IO请求”到收到“IO完成”的这段时间里,同步IO模型下,主线程只能挂起,但异步IO模型下,主线程并没有休息,而是在消息循环中继续处理其他消息。这样,在异步IO模型下,一个线程就可以同时处理多个IO请求,并且没有切换线程的操作。对于大多数IO密集型的应用程序,使用异步IO将大大提升系统的多任务处理能力。
一、协程
在学习异步IO模型前,我们先来了解协程。
协程,又称微线程,纤程。英文名Coroutine。
协程的概念很早就提出来了,但直到最近几年才在某些语言(如Lua)中得到广泛应用。
子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。
所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。
子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。
协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。
注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:
def A(): print('1') print('2') print('3')def B(): print('x') print('y') print('z')假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:
12xy3z但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。
看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行,那和多线程比,协程有何优势?
最大的优势就是协程极高的执行效率。因为子程序切换不是线程切换,而是由程序自身控制,因此,没有线程切换的开销,和多线程比,线程数量越多,协程的性能优势就越明显。
第二大优势就是不需要多线程的锁机制,因为只有一个线程,也不存在同时写变量冲突,在协程中控制共享资源不加锁,只需要判断状态就好了,所以执行效率比多线程高很多。
因为协程是一个线程执行,那怎么利用多核CPU呢?最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。
Python对协程的支持是通过generator实现的。
在generator中,我们不但可以通过for
循环来迭代,还可以不断调用next()
函数获取由yield
语句返回的下一个值。
但是Python的yield
不但可以返回一个值,它还可以接收调用者发出的参数。
来看例子:
传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。
如果改用协程,生产者生产消息后,直接通过yield
跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:
def consumer(): r = '' while True: n = yield r if not n: return print('[CONSUMER] Consuming %s...' % n) r = '200 OK'def produce(c): c.send(None) n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) print('[PRODUCER] Consumer return: %s' % r) c.close()c = consumer()produce(c)执行结果:
[PRODUCER] Producing 1...[CONSUMER] Consuming 1...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 2...[CONSUMER] Consuming 2...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 3...[CONSUMER] Consuming 3...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 4...[CONSUMER] Consuming 4...[PRODUCER] Consumer return: 200 OK[PRODUCER] Producing 5...[CONSUMER] Consuming 5...[PRODUCER] Consumer return: 200 OK注意到consumer
函数是一个generator
,把一个consumer
传入produce
后:
首先调用c.send(None)
启动生成器;
然后,一旦生产了东西,通过c.send(n)
切换到consumer
执行;
consumer
通过yield
拿到消息,处理,又通过yield
把结果传回;
produce
拿到consumer
处理的结果,继续生产下一条消息;
produce
决定不生产了,通过c.close()
关闭consumer
,整个过程结束。
整个流程无锁,由一个线程执行,produce
和consumer
协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
最后套用Donald Knuth的一句话总结协程的特点:
“子程序就是协程的一种特例。”
二、asyncio
asyncio
是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。
asyncio
的编程模型就是一个消息循环。我们从asyncio
模块中直接获取一个EventLoop
的引用,然后把需要执行的协程扔到EventLoop
中执行,就实现了异步IO。
用asyncio
实现Hello world
代码如下:
import asyncio@asyncio.coroutinedef hello(): print("Hello world!") # 异步调用asyncio.sleep(1): r = yield from asyncio.sleep(1) print("Hello again!")# 获取EventLoop:loop = asyncio.get_event_loop()# 执行coroutineloop.run_until_complete(hello())loop.close()@asyncio.coroutine
把一个generator标记为coroutine类型,然后,我们就把这个coroutine
扔到EventLoop
中执行。
hello()
会首先打印出Hello world!
,然后,yield from
语法可以让我们方便地调用另一个generator
。由于asyncio.sleep()
也是一个coroutine
,所以线程不会等待asyncio.sleep()
,而是直接中断并执行下一个消息循环。当asyncio.sleep()
返回时,线程就可以从yield from
拿到返回值(此处是None
),然后接着执行下一行语句。
把asyncio.sleep(1)
看成是一个耗时1秒的IO操作,在此期间,主线程并未等待,而是去执行EventLoop
中其他可以执行的coroutine
了,因此可以实现并发执行。
我们用Task封装两个coroutine
试试:
import threadingimport asyncio@asyncio.coroutinedef hello(): print('Hello world! (%s)' % threading.currentThread()) yield from asyncio.sleep(1) print('Hello again! (%s)' % threading.currentThread())loop = asyncio.get_event_loop()tasks = [hello(), hello()]loop.run_until_complete(asyncio.wait(tasks))loop.close()观察执行过程:
Hello world! (<_MainThread(MainThread, started 140735195337472)>)Hello world! (<_MainThread(MainThread, started 140735195337472)>)(暂停约1秒)Hello again! (<_MainThread(MainThread, started 140735195337472)>)Hello again! (<_MainThread(MainThread, started 140735195337472)>)由打印的当前线程名称可以看出,两个coroutine
是由同一个线程并发执行的。
如果把asyncio.sleep()
换成真正的IO操作,则多个coroutine
就可以由一个线程并发执行。
我们用asyncio
的异步网络连接来获取sina、sohu和163的网站首页:
import asyncio@asyncio.coroutinedef wget(host): print('wget %s...' % host) connect = asyncio.open_connection(host, 80) reader, writer = yield from connect header = 'GET / HTTP/1.0/r/nHost: %s/r/n/r/n' % host writer.write(header.encode('utf-8')) yield from writer.drain() while True: line = yield from reader.readline() if line == b'/r/n': break print('%s header > %s' % (host, line.decode('utf-8').rstrip())) # Ignore the body, close the socket writer.close()loop = asyncio.get_event_loop()tasks = [wget(host) for host in ['www.sina.com.cn', 'www.sohu.com', 'www.163.com']]loop.run_until_complete(asyncio.wait(tasks))loop.close()执行结果如下:
wget www.sohu.com...wget www.sina.com.cn...wget www.163.com...(等待一段时间)(打印出sohu的header)www.sohu.com header > HTTP/1.1 200 OKwww.sohu.com header > Content-Type: text/html...(打印出sina的header)www.sina.com.cn header > HTTP/1.1 200 OKwww.sina.com.cn header > Date: Wed, 20 May 2015 04:56:33 GMT...(打印出163的header)www.163.com header > HTTP/1.0 302 Moved Temporarilywww.163.com header > Server: Cdn Cache Server V2.0...可见3个连接由一个线程通过coroutine
并发完成。
小结
asyncio
提供了完善的异步IO支持;
异步操作需要在coroutine
中通过yield from
完成;
多个coroutine
可以封装成一组Task然后并发执行。
三、async/await
用asyncio
提供的@asyncio.coroutine
可以把一个generator标记为coroutine类型,然后在coroutine内部用yield from
调用另一个coroutine实现异步操作。
为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async
和await
,可以让coroutine的代码更简洁易读。
请注意,async
和await
是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换:
把@asyncio.coroutine
替换为async
;把yield from
替换为await
。让我们对比一下上一节的代码:
@asyncio.coroutinedef hello(): print("Hello world!") r = yield from asyncio.sleep(1) print("Hello again!")用新语法重新编写如下:
async def hello(): print("Hello world!") r = await asyncio.sleep(1) print("Hello again!")剩下的代码保持不变。
小结
Python从3.5版本开始为asyncio
提供了async
和await
的新语法;
注意新语法只能用在Python 3.5以及后续版本,如果使用3.4版本,则仍需使用上一节的方案。
四、aiohttp
asyncio
可以实现单线程并发IO操作。如果仅用在客户端,发挥的威力不大。如果把asyncio
用在服务器端,例如Web服务器,由于HTTP连接就是IO操作,因此可以用单线程+coroutine
实现多用户的高并发支持。
asyncio
实现了TCP、UDP、SSL等协议,aiohttp
则是基于asyncio
实现的HTTP框架。
我们先安装aiohttp
:
pip install aiohttp然后编写一个HTTP服务器,分别处理以下URL:
/
- 首页返回b'<h1>Index</h1>'
;
/hello/{name}
- 根据URL参数返回文本hello, %s!
。
代码如下:
import asynciofrom aiohttp import webasync def index(request): await asyncio.sleep(0.5) return web.Response(body=b'<h1>Index</h1>')async def hello(request): await asyncio.sleep(0.5) text = '<h1>hello, %s!</h1>' % request.match_info['name'] return web.Response(body=text.encode('utf-8'))async def init(loop): app = web.application(loop=loop) app.router.add_route('GET', '/', index) app.router.add_route('GET', '/hello/{name}', hello) srv = await loop.create_server(app.make_handler(), '127.0.0.1', 8000) print('Server started at http://127.0.0.1:8000...') return srvloop = asyncio.get_event_loop()loop.run_until_complete(init(loop))loop.run_forever()注意aiohttp
的初始化函数init()
也是一个coroutine
,loop.create_server()
则利用asyncio
创建TCP服务。
新闻热点
疑难解答