许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术。本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格。
文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces。第二部分选取长一点的循环,把他们分解成单元,然后把每个单元改成函数式的。第三部分选取一个很长的连续数据转换循环,然后把它分解成函数式流水线。
示例都是用Python写的,因为很多人觉得Python易读。为了证明函数式技术对许多语言来说都相同,许多示例避免使用Python特有的语法:map,reduce,pipeline。
导引
当人们谈论函数式编程,他们会提到非常多的“函数式”特性。提到不可变数据1,第一类对象2以及尾调用优化3。这些是帮助函数式编程的语言特征。提到mapping(映射),reducing(归纳),piplining(管道),recursing(递归),currying4(科里化);以及高阶函数的使用。这些是用来写函数式代码的编程技术。提到并行5,惰性计算6以及确定性。这些是有利于函数式编程的属性。
忽略全部这些。可以用一句话来描述函数式代码的特征:避免副作用。它不会依赖也不会改变当前函数以外的数据。所有其他的“函数式”的东西都源于此。当你学习时把它当做指引。
这是一个非函数式方法:
a = 0def increment1(): global a a += 1
这是一个函数式的方法:
def increment2(a): return a + 1
不要在lists上迭代。使用map和reduce。
Map(映射)
Map接受一个方法和一个集合作为参数。它创建一个新的空集合,以每一个集合中的元素作为参数调用这个传入的方法,然后把返回值插入到新创建的集合中。最后返回那个新集合。
这是一个简单的map,接受一个存放名字的list,并且返回一个存放名字长度的list:
name_lengths = map(len, ["Mary", "Isla", "Sam"]) print name_lengths# => [4, 4, 3]
接下来这个map将传入的collection中每个元素都做平方操作:
squares = map(lambda x: x * x, [0, 1, 2, 3, 4]) print squares# => [0, 1, 4, 9, 16]
这个map并没有使用一个命名的方法。它是使用了一个匿名并且内联的用lambda定义的方法。lambda的参数定义在冒号左边。方法主体定义在冒号右边。返回值是方法体运行的结果。
下面的非函数式代码接受一个真名列表,然后用随机指定的代号来替换真名。
import random names = ['Mary', 'Isla', 'Sam']code_names = ['Mr. Pink', 'Mr. Orange', 'Mr. Blonde'] for i in range(len(names)): names[i] = random.choice(code_names) print names# => ['Mr. Blonde', 'Mr. Blonde', 'Mr. Blonde']
新闻热点
疑难解答