首页 > 编程 > Python > 正文

numpy基础教程之np.linalg

2020-02-23 06:26:37
字体:
来源:转载
供稿:网友

前言

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面话不多说了,来一起看看详细的介绍吧

(1)np.linalg.inv():矩阵求逆

(2)np.linalg.det():矩阵求行列式(标量)

np.linalg.norm

顾名思义,linalg=linear+algebra linalg=linear+algebramathrm{linalg=linear + algebra},norm normmathrm{norm}则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):

首先help(np.linalg.norm)查看其文档:

norm(x, ord=None, axis=None, keepdims=False)1

这里我们只对常用设置进行说明,x xmathrm{x}表示要度量的向量,ord ordmathrm{ord}表示范数的种类,

>>> x = np.array([3, 4])>>> np.linalg.norm(x)5.>>> np.linalg.norm(x, ord=2)5.>>> np.linalg.norm(x, ord=1)7.>>> np.linalg.norm(x, ord=np.inf)4123456789

范数理论的一个小推论告诉我们:ℓ 1 ≥ℓ 2 ≥ℓ ∞  ℓ1≥ℓ2≥ℓ∞

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对武林站长站的支持。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表