首页 > 编程 > Python > 正文

用Python制作在地图上模拟瘟疫扩散的Gif图

2020-02-23 00:29:07
字体:
来源:转载
供稿:网友

受杰森的《Almost Looks Like Work》启发,我来展示一些病毒传播模型。需要注意的是这个模型并不反映现实情况,因此不要误以为是西非可怕的传染病。相反,它更应该被看做是某种虚构的僵尸爆发现象。那么,让我们进入主题。

2015331152332590.jpg (565×105)

这就是SIR模型,其中字母S、I和R反映的是在僵尸疫情中,个体可能处于的不同状态。

    S 代表易感群体,即健康个体中潜在的可能转变的数量。     I 代表染病群体,即僵尸数量。     R 代表移除量,即因死亡而退出游戏的僵尸数量,或者感染后又转回人类的数量。但对与僵尸不存在治愈者,所以我们就不要自我愚弄了(如果要把SIR模型应用到流感传染中,还是有治愈者的)。 至于β(beta)和γ(gamma):     β(beta)表示疾病的传染性程度,只要被咬就会感染。     γ(gamma)表示从僵尸走向死亡的速率,取决于僵尸猎人的平均工作速率,当然,这不是一个完美的模型,请对我保持耐心。 S′=?βIS告诉我们健康者变成僵尸的速率,S′是对时间的导数。 I′=βIS?γI告诉我们感染者是如何增加的,以及行尸进入移除态速率(双关语)。 R′=γI只是加上(gamma I),这一项在前面的等式中是负的。

上面的模型没有考虑S/I/R的空间分布,下面来修正一下!

一种方法是把瑞典和北欧国家分割成网格,每个单元可以感染邻近单元,描述如下:

其中对于单元,和是它周围的四个单元。(不要因为对角单元而脑疲劳,我们需要我们的大脑不被吃掉)。

初始化一些东东。
 

import numpy as npimport mathimport matplotlib.pyplot as plt  %matplotlib inlinefrom matplotlib import rcParamsimport matplotlib.image as mpimgrcParams['font.family'] = 'serif'rcParams['font.size'] = 16rcParams['figure.figsize'] = 12, 8from PIL import Image

适当的beta和gamma值就能够摧毁大半江山
 

beta = 0.010gamma = 1

还记得导数的定义么?当导数已知,假设Δt很小的情况下,经过重新整理,它可以用来近似预测函数的下一个取值,我们已经声明过u′(t)。

2015331152448897.jpg (631×171)

初始化一些东东。
 

import numpy as npimport mathimport matplotlib.pyplot as plt  %matplotlib inlinefrom matplotlib import rcParamsimport matplotlib.image as mpimgrcParams['font.family'] = 'serif'rcParams['font.size'] = 16rcParams['figure.figsize'] = 12, 8from PIL import Image

适当的beta和gamma值就能够摧毁大半江山

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表