首页 > 编程 > Python > 正文

Tensorflow中tf.ConfigProto()的用法详解

2020-02-15 21:21:12
字体:
来源:转载
供稿:网友

参考Tensorflow Machine Leanrning Cookbook

tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算

具体代码如下:

import tensorflow as tfsession_config = tf.ConfigProto(   log_device_placement=True,   inter_op_parallelism_threads=0,   intra_op_parallelism_threads=0,   allow_soft_placement=True)sess = tf.Session(config=session_config)a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2,3], name='b')b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3,2], name='b')c = tf.matmul(a,b)print(sess.run(c))

具体解释

log_device_placement=True

设置为True时,会打印出TensorFlow使用了那种操作

inter_op_parallelism_threads=0

设置线程一个操作内部并行运算的线程数,比如矩阵乘法,如果设置为0,则表示以最优的线程数处理

intra_op_parallelism_threads=0

设置多个操作并行运算的线程数,比如 c = a + b,d = e + f . 可以并行运算

allow_soft_placement=True

有时候,不同的设备,它的cpu和gpu是不同的,如果将这个选项设置成True,那么当运行设备不满足要求时,会自动分配GPU或者CPU。

其他选项

当使用GPU时候,Tensorflow运行自动慢慢达到最大GPU的内存

session_config.gpu_options.allow_growth = True

当使用GPU时,设置GPU内存使用最大比例

session_config.gpu_options.per_process_gpu_memory_fraction = 0.4

是否能够使用GPU进行运算

tf.test.is_built_with_cuda()

另外的处理方法

import tensorflow as tfsess = tf.Session()with tf.device('/cpu:0'):  a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])  b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])  with tf.device('/gpu:0'):    c = tf.matmul(a, b)    c = tf.reshape(c, [-1])  with tf.device('/gpu:0'):    d = tf.matmul(b, a)    flat_d = tf.reshape(d, [-1])  combined = tf.multiply(c, flat_d)  print(sess.run(combined))

以上这篇Tensorflow中tf.ConfigProto()的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林站长站。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表