首页 > 编程 > Python > 正文

python 非线性规划方式(scipy.optimize.minimize)

2020-02-15 21:16:29
字体:
来源:转载
供稿:网友

一、背景:

现在项目上有一个用python 实现非线性规划的需求。非线性规划可以简单分两种,目标函数为凸函数 or 非凸函数。

凸函数的 非线性规划,比如fun=x^2+y^2+x*y,有很多常用的python库来完成,网上也有很多资料,比如CVXPY

非凸函数的 非线性规划(求极值),从处理方法来说,可以尝试以下几种:

1.纯数学方法,求导求极值;

2.使用神经网络,深度学习来处理,可参考反向传播算法中链式求导的过程;

3.寻找一些python库来做,本文介绍scipy.optimize.minimize的使用方法

二、库方法介绍

官方文档:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

来看下改方法的入参

scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)

解释:

fun: 求最小值的目标函数

x0:变量的初始猜测值,如果有多个变量,需要给每个变量一个初始猜测值。minimize是局部最优的解法,所以

args:常数值,后面demo会讲解,fun中没有数字,都以变量的形式表示,对于常数项,需要在这里给值

method:求极值的方法,官方文档给了很多种。一般使用默认。每种方法我理解是计算误差,反向传播的方式不同而已,这块有很大理论研究空间

constraints:约束条件,针对fun中为参数的部分进行约束限制

三、demo

1.计算 1/x+x 的最小值

# coding=utf-8from scipy.optimize import minimizeimport numpy as np #demo 1#计算 1/x+x 的最小值 def fun(args):  a=args  v=lambda x:a/x[0] +x[0]  return v  if __name__ == "__main__":  args = (1) #a  x0 = np.asarray((2)) # 初始猜测值  res = minimize(fun(args), x0, method='SLSQP')  print(res.fun)  print(res.success)  print(res.x)

执行结果:函数的最小值为2点多,可以看出minimize求的局部最优

2.计算 (2+x1)/(1+x2) - 3*x1+4*x3 的最小值 x1,x2,x3的范围都在0.1到0.9 之间

# coding=utf-8from scipy.optimize import minimizeimport numpy as np # demo 2#计算 (2+x1)/(1+x2) - 3*x1+4*x3 的最小值 x1,x2,x3的范围都在0.1到0.9 之间def fun(args): a,b,c,d=args v=lambda x: (a+x[0])/(b+x[1]) -c*x[0]+d*x[2] return vdef con(args): # 约束条件 分为eq 和ineq #eq表示 函数结果等于0 ; ineq 表示 表达式大于等于0  x1min, x1max, x2min, x2max,x3min,x3max = args cons = ({'type': 'ineq', 'fun': lambda x: x[0] - x1min},/    {'type': 'ineq', 'fun': lambda x: -x[0] + x1max},/    {'type': 'ineq', 'fun': lambda x: x[1] - x2min},/    {'type': 'ineq', 'fun': lambda x: -x[1] + x2max},/   {'type': 'ineq', 'fun': lambda x: x[2] - x3min},/    {'type': 'ineq', 'fun': lambda x: -x[2] + x3max}) return cons if __name__ == "__main__": #定义常量值 args = (2,1,3,4) #a,b,c,d #设置参数范围/约束条件 args1 = (0.1,0.9,0.1, 0.9,0.1,0.9) #x1min, x1max, x2min, x2max cons = con(args1) #设置初始猜测值  x0 = np.asarray((0.5,0.5,0.5))  res = minimize(fun(args), x0, method='SLSQP',constraints=cons) print(res.fun) print(res.success) print(res.x)            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表