首页 > 系统 > Android > 正文

Android图片缓存之Bitmap详解(一)

2019-12-12 05:50:09
字体:
来源:转载
供稿:网友

前言:
最近准备研究一下图片缓存框架,基于这个想法觉得还是先了解有关图片缓存的基础知识,今天重点学习一下Bitmap、BitmapFactory这两个类。 

Bitmap:
Bitmap是Android系统中的图像处理的最重要类之一。用它可以获取图像文件信息,进行图像剪切、旋转、缩放等操作,并可以指定格式保存图像文件。
 重要函数
 •public void recycle() // 回收位图占用的内存空间,把位图标记为Dead
 •public final boolean isRecycled() //判断位图内存是否已释放  
 •public final int getWidth()//获取位图的宽度 
 •public final int getHeight()//获取位图的高度
 •public final boolean isMutable()//图片是否可修改 
 •public int getScaledWidth(Canvas canvas)//获取指定密度转换后的图像的宽度 
 •public int getScaledHeight(Canvas canvas)//获取指定密度转换后的图像的高度 
 •public boolean compress(CompressFormat format, int quality, OutputStream stream)//按指定的图片格式以及画质,将图片转换为输出流。 
 format:Bitmap.CompressFormat.PNG或Bitmap.CompressFormat.JPEG 
 quality:画质,0-100.0表示最低画质压缩,100以最高画质压缩。对于PNG等无损格式的图片,会忽略此项设置。
 •public static Bitmap createBitmap(Bitmap src) //以src为原图生成不可变得新图像 
 •public static Bitmap createScaledBitmap(Bitmap src, int dstWidth, int dstHeight, boolean filter)//以src为原图,创建新的图像,指定新图像的高宽以及是否可变。 
 •public static Bitmap createBitmap(int width, int height, Config config)――创建指定格式、大小的位图 
 •public static Bitmap createBitmap(Bitmap source, int x, int y, int width, int height)以source为原图,创建新的图片,指定起始坐标以及新图像的高宽。 

BitmapFactory工厂类:
Option 参数类:
 •public boolean inJustDecodeBounds//如果设置为true,不获取图片,不分配内存,但会返回图片的高度宽度信息。
 •public int inSampleSize//图片缩放的倍数
 •public int outWidth//获取图片的宽度值
 •public int outHeight//获取图片的高度值 
 •public int inDensity//用于位图的像素压缩比 
 •public int inTargetDensity//用于目标位图的像素压缩比(要生成的位图) 
 •public byte[] inTempStorage //创建临时文件,将图片存储
 •public boolean inScaled//设置为true时进行图片压缩,从inDensity到inTargetDensity
 •public boolean inDither //如果为true,解码器尝试抖动解码
 •public Bitmap.Config inPreferredConfig //设置解码器
 •public String outMimeType //设置解码图像
 •public boolean inPurgeable//当存储Pixel的内存空间在系统内存不足时是否可以被回收
 •public boolean inInputShareable //inPurgeable为true情况下才生效,是否可以共享一个InputStream
 •public boolean inPreferQualityOverSpeed  //为true则优先保证Bitmap质量其次是解码速度
 •public boolean inMutable //配置Bitmap是否可以更改,比如:在Bitmap上隔几个像素加一条线段
 •public int inScreenDensity //当前屏幕的像素密度 

 工厂方法:
 •public static Bitmap decodeFile(String pathName, Options opts) //从文件读取图片 
 •public static Bitmap decodeFile(String pathName)
 •public static Bitmap decodeStream(InputStream is) //从输入流读取图片
 •public static Bitmap decodeStream(InputStream is, Rect outPadding, Options opts)
 •public static Bitmap decodeResource(Resources res, int id) //从资源文件读取图片
 •public static Bitmap decodeResource(Resources res, int id, Options opts) 
 •public static Bitmap decodeByteArray(byte[] data, int offset, int length) //从数组读取图片
 •public static Bitmap decodeByteArray(byte[] data, int offset, int length, Options opts)
 •public static Bitmap decodeFileDescriptor(FileDescriptor fd)//从文件读取文件 与decodeFile不同的是这个直接调用JNI函数进行读取 效率比较高
 •public static Bitmap decodeFileDescriptor(FileDescriptor fd, Rect outPadding, Options opts) 

Bitmap.Config inPreferredConfig : 
枚举变量 (位图位数越高代表其可以存储的颜色信息越多,图像越逼真,占用内存越大)
 •public static final Bitmap.Config ALPHA_8 //代表8位Alpha位图        每个像素占用1byte内存
 •public static final Bitmap.Config ARGB_4444 //代表16位ARGB位图  每个像素占用2byte内存
 •public static final Bitmap.Config ARGB_8888 //代表32位ARGB位图  每个像素占用4byte内存
 •public static final Bitmap.Config RGB_565 //代表8位RGB位图          每个像素占用2byte内存

Android中一张图片(BitMap)占用的内存主要和以下几个因数有关:图片长度,图片宽度,单位像素占用的字节数。

一张图片(BitMap)占用的内存=图片长度*图片宽度*单位像素占用的字节数 

图片读取实例:
 1.)从文件读取方式一 

 /**  * 获取缩放后的本地图片  *  * @param filePath 文件路径  * @param width 宽  * @param height 高  * @return  */ public static Bitmap readBitmapFromFile(String filePath, int width, int height) {  BitmapFactory.Options options = new BitmapFactory.Options();  options.inJustDecodeBounds = true;  BitmapFactory.decodeFile(filePath, options);  float srcWidth = options.outWidth;  float srcHeight = options.outHeight;  int inSampleSize = 1;  if (srcHeight > height || srcWidth > width) {   if (srcWidth > srcHeight) {    inSampleSize = Math.round(srcHeight / height);   } else {    inSampleSize = Math.round(srcWidth / width);   }  }  options.inJustDecodeBounds = false;  options.inSampleSize = inSampleSize;  return BitmapFactory.decodeFile(filePath, options); }

 2.)从文件读取方式二 效率高于方式一 

/**  * 获取缩放后的本地图片  *  * @param filePath 文件路径  * @param width 宽  * @param height 高  * @return  */ public static Bitmap readBitmapFromFileDescriptor(String filePath, int width, int height) {  try {   FileInputStream fis = new FileInputStream(filePath);   BitmapFactory.Options options = new BitmapFactory.Options();   options.inJustDecodeBounds = true;   BitmapFactory.decodeFileDescriptor(fis.getFD(), null, options);   float srcWidth = options.outWidth;   float srcHeight = options.outHeight;   int inSampleSize = 1;   if (srcHeight > height || srcWidth > width) {    if (srcWidth > srcHeight) {     inSampleSize = Math.round(srcHeight / height);    } else {     inSampleSize = Math.round(srcWidth / width);    }   }   options.inJustDecodeBounds = false;   options.inSampleSize = inSampleSize;   return BitmapFactory.decodeFileDescriptor(fis.getFD(), null, options);  } catch (Exception ex) {  }  return null; }

测试同样生成10张图片两种方式耗时比较 cpu使用以及内存占用两者相差无几 第二种方式效率高一点 所以建议优先采用第二种方式 

  start = System.currentTimeMillis();  for (int i = 0; i < testMaxCount; i++) {   BitmapUtils.readBitmapFromFile(filePath, 400, 400);  }  end = System.currentTimeMillis();  Log.e(TAG, "BitmapFactory decodeFile--time-->" + (end - start));  start = System.currentTimeMillis();  for (int i = 0; i < testMaxCount; i++) {   BitmapUtils.readBitmapFromFileDescriptor(filePath, 400, 400);  }  end = System.currentTimeMillis();  Log.e(TAG, "BitmapFactory decodeFileDescriptor--time-->" + (end - start));

3.)从输入流中读取文件 

 /**  * 获取缩放后的本地图片  *  * @param ins 输入流  * @param width 宽  * @param height 高  * @return  */ public static Bitmap readBitmapFromInputStream(InputStream ins, int width, int height) {  BitmapFactory.Options options = new BitmapFactory.Options();  options.inJustDecodeBounds = true;  BitmapFactory.decodeStream(ins, null, options);  float srcWidth = options.outWidth;  float srcHeight = options.outHeight;  int inSampleSize = 1;  if (srcHeight > height || srcWidth > width) {   if (srcWidth > srcHeight) {    inSampleSize = Math.round(srcHeight / height);   } else {    inSampleSize = Math.round(srcWidth / width);   }  }  options.inJustDecodeBounds = false;  options.inSampleSize = inSampleSize;  return BitmapFactory.decodeStream(ins, null, options); }

4.)从资源文件中读取文件  

 public static Bitmap readBitmapFromResource(Resources resources, int resourcesId, int width, int height) {  BitmapFactory.Options options = new BitmapFactory.Options();  options.inJustDecodeBounds = true;  BitmapFactory.decodeResource(resources, resourcesId, options);  float srcWidth = options.outWidth;  float srcHeight = options.outHeight;  int inSampleSize = 1;  if (srcHeight > height || srcWidth > width) {   if (srcWidth > srcHeight) {    inSampleSize = Math.round(srcHeight / height);   } else {    inSampleSize = Math.round(srcWidth / width);   }  }  options.inJustDecodeBounds = false;  options.inSampleSize = inSampleSize;  return BitmapFactory.decodeResource(resources, resourcesId, options); }

 此种方式相当的耗费内存 建议采用decodeStream代替decodeResource 可以如下形式 

 public static Bitmap readBitmapFromResource(Resources resources, int resourcesId, int width, int height) {  InputStream ins = resources.openRawResource(resourcesId);  BitmapFactory.Options options = new BitmapFactory.Options();  options.inJustDecodeBounds = true;  BitmapFactory.decodeStream(ins, null, options);  float srcWidth = options.outWidth;  float srcHeight = options.outHeight;  int inSampleSize = 1;  if (srcHeight > height || srcWidth > width) {   if (srcWidth > srcHeight) {    inSampleSize = Math.round(srcHeight / height);   } else {    inSampleSize = Math.round(srcWidth / width);   }  }  options.inJustDecodeBounds = false;  options.inSampleSize = inSampleSize;  return BitmapFactory.decodeStream(ins, null, options); }

decodeStream、decodeResource占用内存对比: 

 start = System.currentTimeMillis();  for (int i = 0; i < testMaxCount; i++) {   BitmapUtils.readBitmapFromResource(getResources(), R.mipmap.ic_app_center_banner, 400, 400);   Log.e(TAG, "BitmapFactory decodeResource--num-->" + i);  }  end = System.currentTimeMillis();  Log.e(TAG, "BitmapFactory decodeResource--time-->" + (end - start));  start = System.currentTimeMillis();  for (int i = 0; i < testMaxCount; i++) {   BitmapUtils.readBitmapFromResource1(getResources(), R.mipmap.ic_app_center_banner, 400, 400);   Log.e(TAG, "BitmapFactory decodeStream--num-->" + i);  }  end = System.currentTimeMillis();  Log.e(TAG, "BitmapFactory decodeStream--time-->" + (end - start));

BitmapFactory.decodeResource 加载的图片可能会经过缩放,该缩放目前是放在 java 层做的,效率比较低,而且需要消耗 java 层的内存。因此,如果大量使用该接口加载图片,容易导致OOM错误。
BitmapFactory.decodeStream 不会对所加载的图片进行缩放,相比之下占用内存少,效率更高。
 这两个接口各有用处,如果对性能要求较高,则应该使用 decodeStream;如果对性能要求不高,且需要 Android 自带的图片自适应缩放功能,则可以使用 decodeResource。 

5. )从二进制数据读取图片 

public static Bitmap readBitmapFromByteArray(byte[] data, int width, int height) {  BitmapFactory.Options options = new BitmapFactory.Options();  options.inJustDecodeBounds = true;  BitmapFactory.decodeByteArray(data, 0, data.length, options);  float srcWidth = options.outWidth;  float srcHeight = options.outHeight;  int inSampleSize = 1;  if (srcHeight > height || srcWidth > width) {   if (srcWidth > srcHeight) {    inSampleSize = Math.round(srcHeight / height);   } else {    inSampleSize = Math.round(srcWidth / width);   }  }  options.inJustDecodeBounds = false;  options.inSampleSize = inSampleSize;  return BitmapFactory.decodeByteArray(data, 0, data.length, options); }

6.)从assets文件读取图片 

 /**  * 获取缩放后的本地图片  *  * @param filePath 文件路径  * @return  */ public static Bitmap readBitmapFromAssetsFile(Context context, String filePath) {  Bitmap image = null;  AssetManager am = context.getResources().getAssets();  try {   InputStream is = am.open(filePath);   image = BitmapFactory.decodeStream(is);   is.close();  } catch (IOException e) {   e.printStackTrace();  }  return image; }

图片保存文件: 

 public static void writeBitmapToFile(String filePath, Bitmap b, int quality) {  try {   File desFile = new File(filePath);   FileOutputStream fos = new FileOutputStream(desFile);   BufferedOutputStream bos = new BufferedOutputStream(fos);   b.compress(Bitmap.CompressFormat.JPEG, quality, bos);   bos.flush();   bos.close();  } catch (IOException e) {   e.printStackTrace();  } }

图片压缩: 

 private static Bitmap compressImage(Bitmap image) {  if (image == null) {   return null;  }  ByteArrayOutputStream baos = null;  try {   baos = new ByteArrayOutputStream();   image.compress(Bitmap.CompressFormat.JPEG, 100, baos);   byte[] bytes = baos.toByteArray();   ByteArrayInputStream isBm = new ByteArrayInputStream(bytes);   Bitmap bitmap = BitmapFactory.decodeStream(isBm);   return bitmap;  } catch (OutOfMemoryError e) {  } finally {   try {    if (baos != null) {     baos.close();    }   } catch (IOException e) {   }  }  return null; }

图片缩放: 

 /**  * 根据scale生成一张图片  *  * @param bitmap  * @param scale 等比缩放值  * @return  */ public static Bitmap bitmapScale(Bitmap bitmap, float scale) {  Matrix matrix = new Matrix();  matrix.postScale(scale, scale); // 长和宽放大缩小的比例  Bitmap resizeBmp = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);  return resizeBmp; }

获取图片旋转角度: 

 /**  * 读取照片exif信息中的旋转角度  *  * @param path 照片路径  * @return角度  */ private static int readPictureDegree(String path) {  if (TextUtils.isEmpty(path)) {   return 0;  }  int degree = 0;  try {   ExifInterface exifInterface = new ExifInterface(path);   int orientation = exifInterface.getAttributeInt(ExifInterface.TAG_ORIENTATION, ExifInterface.ORIENTATION_NORMAL);   switch (orientation) {    case ExifInterface.ORIENTATION_ROTATE_90:     degree = 90;     break;    case ExifInterface.ORIENTATION_ROTATE_180:     degree = 180;     break;    case ExifInterface.ORIENTATION_ROTATE_270:     degree = 270;     break;   }  } catch (Exception e) {  }  return degree; }

图片旋转角度: 

  private static Bitmap rotateBitmap(Bitmap b, float rotateDegree) {    if (b == null) {      return null;    }    Matrix matrix = new Matrix();    matrix.postRotate(rotateDegree);    Bitmap rotaBitmap = Bitmap.createBitmap(b, 0, 0, b.getWidth(), b.getHeight(), matrix, true);    return rotaBitmap;  }

图片转二进制:

public byte[] bitmap2Bytes(Bitmap bm) {    ByteArrayOutputStream baos = new ByteArrayOutputStream();    bm.compress(Bitmap.CompressFormat.PNG, 100, baos);    return baos.toByteArray();  } 

Bitmap转Drawable

public static Drawable bitmapToDrawable(Resources resources, Bitmap bm) {    Drawable drawable = new BitmapDrawable(resources, bm);    return drawable;  } 

Drawable转Bitmap 

 public static Bitmap drawableToBitmap(Drawable drawable) {    Bitmap bitmap = Bitmap.createBitmap(drawable.getIntrinsicWidth(), drawable.getIntrinsicHeight(), drawable.getOpacity() != PixelFormat.OPAQUE ? Bitmap.Config.ARGB_8888 : Bitmap.Config.RGB_565);    Canvas canvas = new Canvas(bitmap);    drawable.setBounds(0, 0, drawable.getIntrinsicWidth(), drawable.getIntrinsicHeight());    drawable.draw(canvas);    return bitmap;  }

Drawable、Bitmap占用内存探讨
 之前一直使用过Afinal 和Xutils 熟悉这两框架的都知道,两者出自同一人,Xutils是Afina的升级版,AFinal中的图片内存缓存使用的是Bitmap 而后来为何Xutils将内存缓存的对象改成了Drawable了呢?我们一探究竟 
写个测试程序: 

 List<Bitmap> bitmaps = new ArrayList<>();    start = System.currentTimeMillis();    for (int i = 0; i < testMaxCount; i++) {      Bitmap bitmap = BitmapUtils.readBitMap(this, R.mipmap.ic_app_center_banner);      bitmaps.add(bitmap);      Log.e(TAG, "BitmapFactory Bitmap--num-->" + i);    }    end = System.currentTimeMillis();    Log.e(TAG, "BitmapFactory Bitmap--time-->" + (end - start));    List<Drawable> drawables = new ArrayList<>();        start = System.currentTimeMillis();    for (int i = 0; i < testMaxCount; i++) {      Drawable drawable = getResources().getDrawable(R.mipmap.ic_app_center_banner);      drawables.add(drawable);      Log.e(TAG, "BitmapFactory Drawable--num-->" + i);    }    end = System.currentTimeMillis();    Log.e(TAG, "BitmapFactory Drawable--time-->" + (end - start));

测试数据1000 同一张图片

从测试说明Drawable 相对Bitmap有很大的内存占用优势。这也是为啥现在主流的图片缓存框架内存缓存那一层采用Drawable作为缓存对象的原因。
 小结:图片处理就暂时学习到这里,以后再做补充。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表