首页 > 系统 > Android > 正文

Android的消息机制

2019-12-12 03:50:58
字体:
来源:转载
供稿:网友

一、简介

Android的消息机制主要是指Handler的运行机制,那么什么是Handler的运行机制那?通俗的来讲就是,使用Handler将子线程的Message放入主线程的Messagequeue中,在主线程使用。

二、学习内容

学习Android的消息机制,我们需要先了解如下内容。

  1. 消息的表示:Message
  2. 消息队列:MessageQueue
  3. 消息循环,用于循环取出消息进行处理:Looper
  4. 消息处理,消息循环从消息队列中取出消息后要对消息进行处理:Handler

平常我们接触的大多是Handler和Message,今天就让我们来深入的了解一下他们。

三、代码详解

一般而言我们都是这样使用Handler的

xxHandler.sendEmptyMessage(xxx);

当然还有其他表示方法,但我们深入到源代码中,会发现,他们最终都调用了一个方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) {  RuntimeException e = new RuntimeException(   this + " sendMessageAtTime() called with no mQueue");  Log.w("Looper", e.getMessage(), e);  return false; } return enqueueMessage(queue, msg, uptimeMillis); }

sendMessageAtTime()方法,但这依然不是结束,我们可以看到最后一句enqueueMessage(queue, msg, uptimeMillis);按字面意思来说插入一条消息,那么疑问来了,消息插入了哪里。

boolean enqueueMessage(Message msg, long when) { if (msg.target == null) {  throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) {  throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) {  if (mQuitting) {  IllegalStateException e = new IllegalStateException(   msg.target + " sending message to a Handler on a dead thread");  Log.w(TAG, e.getMessage(), e);  msg.recycle();  return false;  }  msg.markInUse();  msg.when = when;  Message p = mMessages;  boolean needWake;  if (p == null || when == 0 || when < p.when) {  // New head, wake up the event queue if blocked.  msg.next = p;  mMessages = msg;  needWake = mBlocked;  } else {  // Inserted within the middle of the queue. Usually we don't have to wake  // up the event queue unless there is a barrier at the head of the queue  // and the message is the earliest asynchronous message in the queue.  needWake = mBlocked && p.target == null && msg.isAsynchronous();  Message prev;  for (;;) {   prev = p;   p = p.next;   if (p == null || when < p.when) {   break;   }   if (needWake && p.isAsynchronous()) {   needWake = false;   }  }  msg.next = p; // invariant: p == prev.next  prev.next = msg;  }  // We can assume mPtr != 0 because mQuitting is false.  if (needWake) {  nativeWake(mPtr);  } } return true; }

进入源代码,我们发现,我们需要了解一个新类Messagequeue。

虽然我们一般把他叫做消息队列,但是通过研究,我们发下,它实际上是一种单链表的数据结构,而我们对它的操作主要是插入和读取。

看代码33-44,学过数据结构,我们可以轻松的看出,这是一个单链表的插入末尾的操作。

这样就明白了,我们send方法实质就是向Messagequeue中插入这么一条消息,那么另一个问题随之而来,我们该如何处理这条消息。

处理消息我们离不开一个重要的,Looper。那么它在消息机制中又有什么样的作用那?

Looper扮演着消息循环的角色,具体而言它会不停的从MessageQueue中查看是否有新消息如果有新消息就会立刻处理,否则就已知阻塞在那里,现在让我们来看一下他的代码实现。

首先是构造方法

 private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }

可以发现,它将当前线程对象保存了起来。我们继续

Looper在新线程创建过程中有两个重要的方法looper.prepare() looper.loop

new Thread(){ public void run(){ Looper.prepare(); Handler handler = new Handler(); Looper.loop(); }}.start();

我们先来看prepare()方法

private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) {  throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }

咦,我们可以看到这里面又有一个ThreadLocal类,我们在这简单了解一下,他的特性,set(),get()方法。

首先ThreadLocal是一个线程内部的数据存储类,通过它可以在指定的线程中存储数据,数据存储后,只有在制定线程中可以获取存储的数据,对于其他线程而言则无法获取到数据。简单的来说。套用一个列子:

private ThreadLocal<Boolean> mBooleanThreadLocal = new  ThreadLocal<Boolean>();//mBooleanThreadLocal.set(true);Log.d(TAH,"Threadmain"+mBooleanThreadLocal.get());new Thread("Thread#1"){ public void run(){ mBooleanThreadLocal.set(false); Log.d(TAH,"Thread#1"+mBooleanThreadLocal.get()); }; }.start();new Thread("Thread#2"){ public void run(){ Log.d(TAH,"Thread#2"+mBooleanThreadLocal.get()); }; }.start();

上面的代码运行后,我们会发现,每一个线程的值都是不同的,即使他们访问的是同意个ThreadLocal对象。

那么我们接下来会在之后分析源码,为什么他会不一样。现在我们跳回prepare()方法那一步,loop()方法源码贴上

public static void loop() { final Looper me = myLooper(); if (me == null) {  throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) {  Message msg = queue.next(); // might block  if (msg == null) {  // No message indicates that the message queue is quitting.  return;  }  // This must be in a local variable, in case a UI event sets the logger  Printer logging = me.mLogging;  if (logging != null) {  logging.println(">>>>> Dispatching to " + msg.target + " " +   msg.callback + ": " + msg.what);  }  msg.target.dispatchMessage(msg);  if (logging != null) {  logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);  }  // Make sure that during the course of dispatching the  // identity of the thread wasn't corrupted.  final long newIdent = Binder.clearCallingIdentity();  if (ident != newIdent) {  Log.wtf(TAG, "Thread identity changed from 0x"   + Long.toHexString(ident) + " to 0x"   + Long.toHexString(newIdent) + " while dispatching to "   + msg.target.getClass().getName() + " "   + msg.callback + " what=" + msg.what);  }  msg.recycleUnchecked(); } }

首先loop()方法,获得这个线程的Looper,若没有抛出异常。再获得新建的Messagequeue,在这里我们有必要补充一下Messagequeue的next()方法。

Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) {  return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) {  if (nextPollTimeoutMillis != 0) {  Binder.flushPendingCommands();  }  nativePollOnce(ptr, nextPollTimeoutMillis);  synchronized (this) {  // Try to retrieve the next message. Return if found.  final long now = SystemClock.uptimeMillis();  Message prevMsg = null;  Message msg = mMessages;  if (msg != null && msg.target == null) {   // Stalled by a barrier. Find the next asynchronous message in the queue.   do {   prevMsg = msg;   msg = msg.next;   } while (msg != null && !msg.isAsynchronous());  }  if (msg != null) {   if (now < msg.when) {   // Next message is not ready. Set a timeout to wake up when it is ready.   nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);   } else {   // Got a message.   mBlocked = false;   if (prevMsg != null) {    prevMsg.next = msg.next;   } else {    mMessages = msg.next;   }   msg.next = null;   if (DEBUG) Log.v(TAG, "Returning message: " + msg);   msg.markInUse();   return msg;   }  } else {   // No more messages.   nextPollTimeoutMillis = -1;  }  // Process the quit message now that all pending messages have been handled.  if (mQuitting) {   dispose();   return null;  }  // If first time idle, then get the number of idlers to run.  // Idle handles only run if the queue is empty or if the first message  // in the queue (possibly a barrier) is due to be handled in the future.  if (pendingIdleHandlerCount < 0   && (mMessages == null || now < mMessages.when)) {   pendingIdleHandlerCount = mIdleHandlers.size();  }  if (pendingIdleHandlerCount <= 0) {   // No idle handlers to run. Loop and wait some more.   mBlocked = true;   continue;  }  if (mPendingIdleHandlers == null) {   mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];  }  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);  }  // Run the idle handlers.  // We only ever reach this code block during the first iteration.  for (int i = 0; i < pendingIdleHandlerCount; i++) {  final IdleHandler idler = mPendingIdleHandlers[i];  mPendingIdleHandlers[i] = null; // release the reference to the handler  boolean keep = false;  try {   keep = idler.queueIdle();  } catch (Throwable t) {   Log.wtf(TAG, "IdleHandler threw exception", t);  }  if (!keep) {   synchronized (this) {   mIdleHandlers.remove(idler);   }  }  }  // Reset the idle handler count to 0 so we do not run them again.  pendingIdleHandlerCount = 0;  // While calling an idle handler, a new message could have been delivered  // so go back and look again for a pending message without waiting.  nextPollTimeoutMillis = 0; } }

从24-30我们可以看到,他遍历了整个queue找到msg,若是msg为null,我们可以看到50,他把nextPollTimeoutMillis = -1;实际上是等待enqueueMessage的nativeWake来唤醒。较深的源码涉及了native层代码,有兴趣可以研究一下。简单来说next()方法,在有消息是会返回这条消息,若没有,则阻塞在这里。

我们回到loop()方法27msg.target.dispatchMessage(msg);我们看代码

public void dispatchMessage(Message msg) { if (msg.callback != null) {  handleCallback(msg); } else {  if (mCallback != null) {  if (mCallback.handleMessage(msg)) {   return;  }  }  handleMessage(msg); } }

msg.target实际上就是发送这条消息的Handler,我们可以看到它将msg交给dispatchMessage(),最后调用了我们熟悉的方法handleMessage(msg);

三、总结

到目前为止,我们了解了android的消息机制流程,但它实际上还涉及了深层的native层方法.

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持武林网!

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表