首页 > 学院 > 网络通信 > 正文

RFC777 - Internet Control Message Protocol

2019-11-04 11:39:49
字体:
来源:转载
供稿:网友

  Network Working Group J. Postel
Request for Comments: 777 ISI
APRil 1981
Updates: IENs 109, 128
Updates: RFC760

Internet Control Message Protocol

IntrodUCtion

The Internet Protocol (ip) [1] is used for host-to-host datagram
service in a system of interconnected networks called the
Catenet [2]. The network connecting devices are called Gateways.
These gateways communicate between themselves for control purposes
via a Gateway to Gateway Protocol (GGP) [3,4]. Occasionally a
gateway or destination host will communicate with a source host, for
example, to report an error in datagram processing. For such
purposes this protocol, the Internet Control Message Protocol (ICMP),
is used. ICMP, uses the basic support of IP as if it were a higher
level protocol, however, ICMP is actually an integral part of IP, and
must be implemented by every IP module.

ICMP messages are sent in several situations: for example, when a
datagram cannot reach its destination, when the gateway does not have
the buffering capacity to forward a datagram, and when the gateway
can direct the host to send traffic on a shorter route.

The Internet Protocol is not designed to be absolutely reliable. The
purpose of these control messages is to provide feedback about
problems in the communication environment, not to make IP reliable.
There are still no guarantees that a datagram will be delivered or a
control message will be returned. Some datagrams may still be
undelivered without any report of their loss. The higher level
protocols that use IP must implement their own reliability procedures
if reliable communication is required.

The ICMP messages typically report errors in the processing of
datagrams, to avoid the infinite regress of messages about messages
etc., no ICMP messages are sent about ICMP messages.

Message Formats

ICMP messages are sent using the basic IP header. The first octet of
the data portion of the datagram is a ICMP type field; the value of
this field determines the format of the remaining data. Any field
labeled "unused" is reserved for later extensions and must be zero
when sent, but receivers should not check these fields. Unless
otherwise noted under the individual format descriptions, the values
of the internet header fields are as follows:

[Page 1]

April 1981
RFC777

Version

4

IHL

Internet header length in 32-bit Words.

Type of Service

0

Total Length

Length of internet header and data in octets.

Identification, Flags, Fragment Offset

Used in fragmentation, see [1].

Time to Live

Time to live in seconds; as this field is decremented at each
machine in which the datagram is processed, the value in this
field should be at least as great as the number of gateways which
this datagram will traverse.

Protocol

ICMP = 1

Header Checksum

The 16 bit one's complement of the one's complement sum of all 16
bit words in the header. For computing the checksum, the checksum
field should be zero. This checksum may be replaced in the
future.

Source Address

The address of the gateway or host that composes the ICMP message.
Unless otherwise noted, this can be any of a gateway's addresses.

Destination Address

The address of the gateway or host to which the message should be
sent.

[Page 2]

April 1981
RFC777

Destination Unreachable Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type Code unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Internet Header + 64 bits of Original Data Datagram
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

3

Code

0 = net unreachable;

1 = host unreachable;

2 = protocol unreachable;

3 = port unreachable;

4 = fragmentation needed and DF set.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

If, according to the information in the gateway's routing tables,
the network specified in the internet destination field of a
datagram is unreachable, e.g., the distance to the network is
infinity, the gateway sends a destination unreachable message to

[Page 3]

April 1981
RFC777

the internet source host of the datagram. In addition, in some
networks, the gateway may be able to determine if the internet
destination host is unreachable. Gateways in these networks may
send destination unreachable messages to the source host when the
destination host is unreachable.

If, in the destination host, the IP module cannot deliver the
datagram because the indicated protocol module or process port is
not active, the destination host may send a destination
unreachable message to the source host.

Another case is when a datagram must be fragmented to be forwarded
by a gateway yet the Don't Fragment flag is on. In this case the
gateway must discard the datagram and return a destination
unreachable message.

[Page 4]

April 1981
RFC777

Time Exceeded Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type Code unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Internet Header + 64 bits of Original Data Datagram
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

11

Code

0 = time to live exceeded in transit;

1 = fragment reassembly time exceeded.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

If the gateway processing a datagram finds the time to live field
is zero it must discard the datagram. The gateway may also notify
the source host via the time exceeded message.

If a host reassembling a fragmented datagram cannot complete the
reassembly due to missing fragments within its time limit it
discards the datagram, and it may send a time exceeded message.

[Page 5]

April 1981
RFC777

Parameter Problem Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type Code Parameter unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Internet Header + 64 bits of Original Data Datagram
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:

Destination Address

The source network and address from the original datagram's data.

ICMP Fields:

Type

12

Code

0 = problem with option.

Parameter

If code = 0, IP option type.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

If the gateway or host processing a datagram finds a problem with
the header parameters such that it cannot complete processing the
datagram it must discard the datagram. One potential source of
such a problem is an option that is not implemented, or incorrect
arguments in an option. The gateway or host may also notify the
source host via the parameter problem message.

[Page 6]

April 1981
RFC777

Source Quench Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Internet Header + 64 bits of Original Data Datagram
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:

Destination Address

The source network and address of the original datagram's data.

ICMP Fields:

Type

4

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

Description

A gateway may discard internet datagrams if it does not have the
buffer space needed to queue the datagrams for output to the next
network on the route to the destination network. If a gateway
discards a datagram, it may send a source quench message to the
internet source host of the datagram. A destination host may also
send a source quench message if datagrams arrive too fast to be
processed. The source quench message is a request to the host to
cut back the rate at which it is sending traffic to the internet
destination. The gateway may send a source quench message for
every message that it discards. On receipt of a source quench
message, the source host should cut back the rate at which it is
sending traffic to the specified destination until it no longer
receives source quench messages from the gateway. The source host
can then gradually increase the rate at which it sends traffic to
the destination until it again receives source quench messages.

[Page 7]

April 1981
RFC777

The gateway or host may send the source quench message when it
approaches its capacity limit rather than waiting until the
capacity is exceeded. This means that the data datagram which
triggered the source quench message may be delivered.

[Page 8]

April 1981
RFC777

Redirect Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type Code unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Gateway Internet Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Internet Header + 64 bits of Original Data Datagram
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:

Destination Address

The source network and address of the original datagram's data.

ICMP Fields:

Type

5

Code

0 = Redirect datagrams for the Network.

1 = Redirect datagrams for the Host.

2 = Redirect datagrams for the Type of Service and Network.

3 = Redirect datagrams for the Type of Service and Host.

Gateway Internet Address

Address of the gateway to which traffic for the network specified
in the internet destination network field of the original
datagram's data should be sent.

Internet Header + 64 bits of Data Datagram

The internet header plus the first 64 bits of the original
datagram's data. This data is used by the host to match the
message to the appropriate process. If a higher level protocol
uses port numbers, they are assumed to be in the first 64 data
bits of the original datagram's data.

[Page 9]

April 1981
RFC777

Description

The gateway sends a redirect message to a host in the following
situation. A gateway, G1, receives an internet datagram from a
host on a network to which the gateway is attached. The gateway,
G1, checks its routing table and oBTains the address of the next
gateway, G2, on the route to the datagram's internet destination
network, X. If G2 and the host identified by the internet source
address of the datagram are on the same network, a redirect
message is sent to the host. The redirect message advises the
host to send its traffic for network X directly to gateway G2 as
this is a shorter path to the destination. The gateway forwards
the original datagram's data to its internet destination.

[Page 10]

April 1981
RFC777

Echo or Echo Reply Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Data ...
+-+-+-+-+-

IP Fields:

Addresses

The address of the source in an echo message will be the
destination of the echo reply message. To form an echo reply
message, the source and destination addresses are simply reversed.

IP Fields:

Type

8 for echo message;

0 for echo reply message.

Description

The data received in the echo message must be returned in the echo
reply message.

[Page 11]

April 1981
RFC777

Timestamp or Timestamp Reply Message

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type unused
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Originate Timestamp
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Receive Timestamp
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Transmit Timestamp
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

IP Fields:

Addresses

The address of the source in a timestamp message will be the
destination of the timestamp reply message. To form a timestamp
reply message, the source and destination addresses are simply
reversed.

IP Fields:

Type

13 for timestamp message;

14 for timestamp reply message.

Description

The data received (a timestamp) in the message is returned in the
reply together with an additional timestamp. The timestamp is 32
bits of milliseconds since midnight UT. One use of these
timestamps is described by Mills [5].

[Page 12]

April 1981
RFC777

Summary of Message Types

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

8 Echo

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

[Page 13]

April 1981
RFC777

References

[1] Postel, J., ed., "DOD Standard Internet Protocol", IEN 128,
RFC760, USC/Information Sciences Institute, NTIS ADA079730,
January 1980. Appears in: Computer Communication Review,
Special Interest Group on Data Communications, ACM, V.10, N.4,
October 1980.

[2] Cerf, V., "The Catenet Model for Internetworking," Information
Processing Techniques Office, Defense Advanced Research
Projects Agency, IEN 48, July 1978.

[3] Strazisar, V., "Gateway Routing: An Implementation
Specification", IEN 30, Bolt Beranek and Newman, April 1979.

[4] Strazisar, V., "How to Build a Gateway", IEN 109, Bolt Beranek
and Newman, August 1979.

[5] Mills, D., "DCNET Internet Clock Service," RFC778, COMSAT
Laboratories, April 1981.


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表