首页 > 语言 > JavaScript > 正文

javascript解三阶幻方(九宫格)

2024-05-06 16:18:41
字体:
来源:转载
供稿:网友

本文给大家分享的是使用javascript实现解答九宫格问题的算法,非常的简单实用,有需要的小伙伴可以参考下。

谜题:三阶幻方, 试将1~9这9个不同整数填入一个3×3的表格,使得每行、每列以及每条对角线上的数字之和相同。

策略:穷举搜索。列出所有的整数填充方案,然后进行过滤。

亮点为递归函数getPermutation的设计,文章最后给出了几个非递归算法

  1. // 递归算法,很巧妙,但太费资源 
  2. function getPermutation(arr) { 
  3. if (arr.length == 1) { 
  4. return [arr]; 
  5. var permutation = []; 
  6. for (var i = 0; i < arr.length; i++) { 
  7. var firstEle = arr[i]; //取第一个元素 
  8. var arrClone = arr.slice(0); //复制数组 
  9. arrClone.splice(i, 1); //删除第一个元素,减少数组规模 
  10. var childPermutation = getPermutation(arrClone);//递归 
  11. for (var j = 0; j < childPermutation.length; j++) { 
  12. childPermutation[j].unshift(firstEle); //将取出元素插入回去 
  13. permutation = permutation.concat(childPermutation); 
  14. return permutation; 
  15.  
  16. function validateCandidate(candidate) { 
  17. var sum = candidate[0] + candidate[1] + candidate[2]; 
  18. for (var i = 0; i < 3; i++) { 
  19. if (!(sumOfLine(candidate, i) == sum && sumOfColumn(candidate, i) == sum)) { 
  20. return false
  21. if (sumOfDiagonal(candidate, true) == sum && sumOfDiagonal(candidate, false) == sum) { 
  22. return true
  23. return false
  24. function sumOfLine(candidate, line) { 
  25. return candidate[line * 3] + candidate[line * 3 + 1] + candidate[line * 3 + 2]; 
  26. function sumOfColumn(candidate, col) { 
  27. return candidate[col] + candidate[col + 3] + candidate[col + 6]; 
  28. function sumOfDiagonal(candidate, isForwardSlash) { 
  29. return isForwardSlash ? candidate[2] + candidate[4] + candidate[6] : candidate[0] + candidate[4] + candidate[8]; 
  30.  
  31. var permutation = getPermutation([1, 2, 3, 4, 5, 6, 7, 8, 9]); 
  32. var candidate; 
  33. for (var i = 0; i < permutation.length; i++) { 
  34. candidate = permutation[i]; 
  35. if (validateCandidate(candidate)) { 
  36. break
  37. else { 
  38. candidate = null
  39. if (candidate) { 
  40. console.log(candidate); 
  41. else { 
  42. console.log('No valid result found'); 
  43.  
  44. //求模(非递归)全排列算法 
  45.  
  46. /* 
  47. 算法的具体示例: 
  48. *求4个元素["a", "b", "c", "d"]的全排列, 共循环4!=24次,可从任意>=0的整数index开始循环,每次累加1,直到循环完index+23后结束; 
  49. *假设index=13(或13+24,13+224,13+3*24…),因为共4个元素,故迭代4次,则得到的这一个排列的过程为: 
  50. *第1次迭代,13/1,商=13,余数=0,故第1个元素插入第0个位置(即下标为0),得["a"]; 
  51. *第2次迭代,13/2, 商=6,余数=1,故第2个元素插入第1个位置(即下标为1),得["a", "b"]; 
  52. *第3次迭代,6/3, 商=2,余数=0,故第3个元素插入第0个位置(即下标为0),得["c", "a", "b"]; 
  53. *第4次迭代,2/4,商=0,余数=2, 故第4个元素插入第2个位置(即下标为2),得["c", "a", "d", "b"]; 
  54. */ 
  55.  
  56. function perm(arr) { 
  57. var result = new Array(arr.length); 
  58. var fac = 1; 
  59. for (var i = 2; i <= arr.length; i++) //根据数组长度计算出排列个数 
  60. fac *= i; 
  61. for (var index = 0; index < fac; index++) { //每一个index对应一个排列 
  62. var t = index; 
  63. for (i = 1; i <= arr.length; i++) { //确定每个数的位置 
  64. var w = t % i; 
  65. for (var j = i - 1; j > w; j--) //移位,为result[w]留出空间 
  66. result[j] = result[j - 1]; 
  67. result[w] = arr[i - 1]; 
  68. t = Math.floor(t / i); 
  69. if (validateCandidate(result)) { 
  70. console.log(result); 
  71. break
  72. perm([1, 2, 3, 4, 5, 6, 7, 8, 9]); 
  73. //很巧妙的回溯算法,非递归解决全排列 
  74.  
  75. function seek(index, n) { 
  76. var flag = false, m = n; //flag为找到位置排列的标志,m保存正在搜索哪个位置,index[n]为元素(位置编码) 
  77. do { 
  78. index[n]++; //设置当前位置元素 
  79. if (index[n] == index.length) //已无位置可用 
  80. index[n--] = -1; //重置当前位置,回退到上一个位置 
  81. else if (!(function () { 
  82. for (var i = 0; i < n; i++) //判断当前位置的设置是否与前面位置冲突 
  83. if (index[i] == index[n]) return true;//冲突,直接回到循环前面重新设置元素值 
  84. return false//不冲突,看当前位置是否是队列尾,是,找到一个排列;否,当前位置后移 
  85. })()) //该位置未被选择 
  86. if (m == n) //当前位置搜索完成 
  87. flag = true
  88. else 
  89. n++; //当前及以前的位置元素已经排好,位置后移 
  90. while (!flag && n >= 0) 
  91. return flag; 
  92. function perm(arr) { 
  93. var index = new Array(arr.length); 
  94. for (var i = 0; i < index.length; i++) 
  95. index[i] = -1; 
  96. for (i = 0; i < index.length - 1; i++) 
  97. seek(index, i); //初始化为1,2,3,...,-1 ,最后一位元素为-1;注意是从小到大的,若元素不为数字,可以理解为其位置下标 
  98. while (seek(index, index.length - 1)) { 
  99. var temp = []; 
  100. for (i = 0; i < index.length; i++) 
  101. temp.push(arr[index[i]]); 
  102. if (validateCandidate(temp)) { 
  103. console.log(temp); 
  104. break
  105. perm([1, 2, 3, 4, 5, 6, 7, 8, 9]); 

全排列(非递归求顺序)算法

1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列;

2、按如下算法求全排列:

设P是1~n(位置编号)的一个全排列:p = p1,p2...pn = p1,p2...pj-1,pj,pj+1...pk-1,pk,pk+1...pn

(1)从排列的尾部开始,找出第一个比右边位置编号小的索引j(j从首部开始计算),即j = max{i | pi < pi+1}

(2)在pj的右边的位置编号中,找出所有比pj大的位置编号中最小的位置编号的索引k,即 k = max{i | pi > pj}

pj右边的位置编号是从右至左递增的,因此k是所有大于pj的位置编号中索引最大的

(3)交换pj与pk

(4)再将pj+1...pk-1,pk,pk+1...pn翻转得到排列p' = p1,p2...pj-1,pj,pn...pk+1,pk,pk-1...pj+1

(5)p'便是排列p的下一个排列

例如:

24310是位置编号0~4的一个排列,求它下一个排列的步骤如下:

(1)从右至左找出排列中第一个比右边数字小的数字2;

(2)在该数字后的数字中找出比2大的数中最小的一个3;

(3)将2与3交换得到34210;

(4)将原来2(当前3)后面的所有数字翻转,即翻转4210,得30124;

(5)求得24310的下一个排列为30124。

 

 
  1. function swap(arr, i, j) { 
  2. var t = arr[i]; 
  3. arr[i] = arr[j]; 
  4. arr[j] = t; 
  5.  
  6. function sort(index) { 
  7. for (var j = index.length - 2; j >= 0 && index[j] > index[j + 1]; j--) 
  8. //本循环从位置数组的末尾开始,找到第一个左边小于右边的位置,即j 
  9. if (j < 0) return false//已完成全部排列 
  10. for (var k = index.length - 1; index[k] < index[j]; k--) 
  11. //本循环从位置数组的末尾开始,找到比j位置大的位置中最小的,即k 
  12. swap(index, j, k); 
  13. for (j = j + 1, k = index.length - 1; j < k; j++, k--) 
  14. swap(index, j, k); //本循环翻转j+1到末尾的所有位置 
  15. return true
  16. function perm(arr) { 
  17. var index = new Array(arr.length); 
  18. for (var i = 0; i < index.length; i++) 
  19. index[i] = i; 
  20. do { 
  21. var temp = []; 
  22. for (i = 0; i < index.length; i++) 
  23. temp.push(arr[index[i]]); 
  24. if (validateCandidate(temp)) { 
  25. console.log(temp); 
  26. break
  27. while (sort(index)); 
  28. perm([1, 2, 3, 4, 5, 6, 7, 8, 9]); 

以上所述就是本文的全部内容了,希望大家能够喜欢。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

图片精选