首页 > 新闻 > 校园 > 正文

2021年高考数学试题评析

2021-06-07 19:51:42
字体:
来源:转载
供稿:网友
2021年教育部考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。

数学科落实高考内容改革总体要求,贯彻德智体美劳全面发展的教育方针,聚焦核心素养,突出关键能力考查,体现了高考数学的科学选拔功能和育人导向作用。试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则;倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,设计真实问题情境,体现数学的应用价值。试卷稳步推进改革,科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放性,稳中求新,全面体现了基础性、综合性、应用性和创新性的考查要求。

一、发挥学科特色,彰显教育功能

高考数学命题始终坚持思想性与科学性的高度统一,发挥数学应用广泛、联系实际的学科特点,命制具有教育意义的试题以增强学生社会责任感,引导学生形成正确的人生观、价值观、世界观。试题运用我国社会主义建设和科技发展的重大成就作为试题情境,深入挖掘我国社会经济建设和科技发展等方面的学科素材,引导学生关注我国社会现实与经济、科技进步与发展,增强民族自豪感与自信心,增强国家认同,增强理想信念与爱国情怀。

1.关注科技发展与进步。新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计立体几何问题,考查考生的空间想象能力和阅读理解、数学建模的素养。

2.关注社会与经济发展。乙卷理科第6题以北京冬奥会志愿者的培训为试题背景,考查逻辑推理能力和运算求解能力。新高考Ⅰ卷第18题以“一带一路”知识竞赛为背景,考查了考生对概率统计基本知识的理解与应用。甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生分析问题和数据处理的能力。

3.关注优秀传统文化。乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生综合运用知识解决问题的能力,让考生充分感悟到我国古代数学家的聪明才智。新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生灵活运用数学知识分析问题的能力。

二、坚持开放创新,考查关键能力

2020年10月,中共中央国务院《深化新时代教育评价改革总体方案》提出:稳步推进中高考改革,构建引导学生德智体美劳全面发展的考试内容体系,改变相对固化的试题形式,增强试题开放性,减少死记硬背和“机械刷题”现象。数学科高考积极贯彻《总体方案》要求,加大开放题的创新力度,利用开放题考查数学学科核心素养和关键能力,发挥数学科高考的选拔功能。

1.“举例问题”灵活开放。如新高考Ⅱ卷第14题的答案是开放的,给不同水平的考生提供了充分发挥自己数学能力的空间,在考查思维的灵活性方面起到了很好的作用。高考乙卷文、理科第16题有多组正确答案,有多种解题方案可供选择,考查了考生的空间想象能力,具有较好的选拔性。

2. “结构不良问题”适度开放。如甲卷理科第18题,试题给出部分已知条件,要求考生根据试题要求构建一个命题,给考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象。新高考Ⅱ卷第22题第(2)问体现了“结构不良问题”适度开放命题的科学性与素养导向、能力为重的命题原则,对逻辑推理能力、数学抽象能力、直观想象能力等作了很深入地考查,既有利于选拔,也有利于考生发挥好自己的数学能力水平。

3.“存在问题”有序开放。如新高考Ⅱ卷第18题设计具有开放性,基于课程标准,重点考查考生的逻辑推理能力和运算求解题能力,在体现开放性的同时也体现了思维的准确性与有序性。新高考Ⅰ卷第21题第(2)问有序开放问题探索的内容,要求考生运用解析几何的基本思想方法分析问题和解决问题,考查考生在开放的情境中发现主要矛盾的能力。

三、倡导理论联系实际,学以致用

2021年数学科高考在应用性进行重点探索,取得突破。试题注重理论联系实际,体现数学的应用价值,并让学生感悟到数学的应用之美。理论联系实际的试题,体现现代科技发展和现代社会生产等方面的特点,有机渗透数学建模、数据分析、逻辑推理等数学核心素养与数学思想方法的应用,对选拔与育人具有积极的意义。

1.取材真实情境,解决实践问题

如新高考Ⅱ卷第21题取材于生命科学中真实的问题,体现了概率在生命科学中的应用。试题考查了数学抽象、直观想象、逻辑推理等数学核心素养,重点考查了考生综合应用概率、数列、方程、函数等知识和方法解决实际问题的能力,体现了 “基础性,综合性,应用性,创新性”的考查要求。甲卷理科第8题以测量珠穆朗玛峰高程的方法之一——三角高程测量法为背景设计,情境真实,突出理论联系实际,要求考生能正确应用线线关系、线面关系、点面关系等相关几何知识,构建计算模型,同时考查了考生运用正弦定理等解三角形的知识和方法解决实际问题的能力。

2.关注青少年身心健康

身心健康是素质教育的核心内容,在高考评价体系的核心价值指标体系中,包含有健康情感的指标,要求学生具有健康意识,注重增强体质,健全人格,锻炼意志。数学试题对相关内容也有所体现。如高考甲卷理科第4题(文科第6题),以社会普遍关注的青少年视力问题为背景设计,重点考查了考生的数学理解能力和运算求解能力。

3. 关注现实生产生活

如高考乙卷文、理科第17题,以芯片生产中的刻蚀速率为原型,设计了概率统计的应用问题,考查了考生对于平均数、方差等知识的理解和应用,引导考生树立正确的人生观、价值观。新高考Ⅱ卷第6题,以某物理量的测量为背景,考查了正态分布基本知识的理解与应用,引导学生重视数学实验,重视数学的应用。

2021年数学试题很好地落实了“立德树人,服务选才,引导教学”的核心功能,坚持高考的核心价值,突出学科特色,重视数学本质,发挥了数学科高考的选拔功能,对深化中学数学教学改革发挥了积极的导向作用。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表