首页 > 数据库 > MongoDB > 正文

MongoDB学习笔记之MapReduce使用示例

2020-10-29 18:50:46
字体:
来源:转载
供稿:网友

一、mapreduce是根据map函数里调用的emit函数的第一个参数来进行分组的

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数, Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将key 与 value 传递给 Reduce 函数进行处理。Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:
1. map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
2. reduce 统计函数,reduce函数的任务就是将key- values变成key-value,也就是把values数组变成一个单一的值value。
3. out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
4. query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
5. sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
6. limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

//测试数据准备db.user.drop();for(var i=10; i< 100; i++) {  db.user.insert({    name:"user" + i,     age : Math.floor(Math.random()*10)+ 20,     sex : Math.floor(Math.random()*3)%2 ==0 ? 'M' : 'F',    chinese : Math.floor(Math.random()*50)+50,    math : Math.floor(Math.random()*50)+50,    english : Math.floor(Math.random()*50)+50,    class : "C" + i%5  })}// runCommand运行方式db.sales.runCommand({  mapreduce: "user",  map: function(){    if(this.class == "C1") {      emit(this.age, this.age);    }  },  reduce: function(key,values){    var maxValue = Max(key, values);    return maxValue;  },  {    out: {inline: 1},    query : "",    sort: "",    limit: "",  }})db.user.mapReduce(  // 映射函数,里面会调用emit(key,value),集合会按照你指定的key进行映射分组。  function(){    // 按照emit函数的第一个参数进行分组    // 第二个参数的值会传递给reduce    emit(this.age, this);    },  // 简化函数,会对map分组后的数据进行分组简化  // 在reduce(key,value)中的key就是emit中的key, vlaues为emit分组后的emit(value)的集合  function(key, values){    var maxValue = Math.max(key, values);    return maxValue;  },  // 可选参数  {    query: {sex: "F"},    out: "result",    sort : {},    limit : 0  })

执行结果:

{  "result" : "result", // 存放的集合名  "timeMillis" : 23,  "counts" : {    "input" : 29, // 传入文档的个数    "emit" : 29,  // 此函数被调用的次数    "reduce" : 6, // 此函数被调用的次数    "output" : 8  // 最后返回文档的个数  },  "ok" : 1}

查看返回的结果:

db.result.find()
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表