首页 > 编程 > Swift > 正文

Swift中排序算法的简单取舍详解

2020-03-09 17:42:17
字体:
来源:转载
供稿:网友

前言

对于iOS开发者来说, 算法的实现过程其实并不怎么关心, 因为只需要调用高级接口就可以得到系统最优的算法, 但了解轮子背后的原理才能更好的取舍, 不是么?下面话不多说了,来一起看看详细的介绍吧。

选择排序

我们以[9, 8, 7, 6, 5]举例.

[9, 8, 7, 6, 5]

第一次扫描, 扫描每一个数, 如比第一个数小则交换, 直到找到最小的数, 将其交换至下标0.

[8, 9, 7, 6, 5][7, 9, 8, 6, 5][6, 9, 8, 7, 5][5, 9, 8, 7, 6]

第二次扫描, 由于确定了第一个数, 则从第二个数开始扫描, 逻辑同上取得次小的数交换至下标1.

[5, 8, 9, 7, 6][5, 7, 9, 8, 6][5, 6, 9, 8, 7]

第三次扫描, 跳过两个数, 从第三个数开始扫描, 并交换取得下标2.

[5, 6, 8, 9, 7][5, 6, 7, 9, 8]

第四次扫描, 套用上述逻辑取得下标3.

[5, 6, 7, 8, 9]

由于最后只有一位数, 不需要交换, 则无需扫描.

了解了逻辑, 我们来看代码该怎么写;

func selectSort(list: inout [Int]) { let n = list.count for i in 0..<(n-1) { var j = i + 1 for _ in j..<n {  if list[i] > list[j] {  list[i] ^= list[j]  list[j] ^= list[i]  list[i] ^= list[j]  }  j += 1 } }}

外层循环取从0扫描到n-1, i代表了扫描推进的次数.

内层循环从i+1, 扫描到最后一位, 逐个比较, 如果比i小则交换.

选择排序(优化)

上述我们通过了非常简单的逻辑阐述了选择排序, 果然, 算法没有想象中难吧. 接下来, 我们来看看如何优化这个排序算法.

我们同样以[9, 8, 7, 6, 5]举例.

[9, 8, 7, 6, 5]

第一次扫描, 和之前一样扫描, 但只记住最小值的下标, 退出内层循环时交换.

[5, 8, 7, 6, 9]

第二次扫描, 确定第一位最小值后推进一格, 逻辑同上进行交换.

[5, 6, 7, 8, 9]

我们可以明显的看到优化的效果, 交换的次数降低了, 因为我们不是每次交换数值, 而是用指针记录后跳出内层循环后进行交换.

我们来看下代码该如何优化:

func optimizationSelectSort(list: inout [Int]) { let n = list.count var idx = 0 for i in 0..<(n - 1) { idx = i; var j = i + 1 for _ in j..<n {  if list[idx] > list[j] {  idx = j;  }  j += 1 } if idx != i {  list[i] ^= list[idx]  list[idx] ^= list[i]  list[i] ^= list[idx] } }}

通过idx记录最小值的下标, 如果下标和当前值不等则交换数值.

冒泡排序

接下来我们来看冒泡排序, 同样以[9, 8, 7, 6, 5]为例.

[9, 8, 7, 6, 5]

第一次扫描, 同样扫描每一个数, 不同的是, 有两个指针同时向前走, 如果n>n-1则交换. 确定最末值为最大值.

[8, 9, 7, 6, 5][8, 7, 9, 6, 5][8, 7, 6, 9, 5][8, 7, 6, 5, 9]

第二次扫描, 从头进行扫描, 由于以确定最末尾为最大值, 则少扫描一位.

[7, 8, 6, 5, 9][7, 6, 8, 5, 9][7, 6, 5, 8, 9]

第三次扫描, 和上述逻辑相同.

[6, 7, 5, 8, 9][6, 5, 7, 8, 9]

第四次扫描, 得到排序完成的值.

[5, 6, 7, 8, 9]

上述可能不好理解, 多看几遍应该可以.

如果还是理解不能, 我们就来看看代码吧;

func popSort(list: inout [Int]) { let n = list.count for i in 0..<n-1 { var j = 0 for _ in 0..<(n-1-i) {  if list[j] > list[j+1] {  list[j] ^= list[j+1]  list[j+1] ^= list[j]  list[j] ^= list[j+1]  }  j += 1 } }}

外层循环同样从0扫描到n-1, 这点不赘述.

内层循环从头也就是0扫描到n-1-i, 也就是每次扫描少扫一位, 应为每次都会确定最末位为最大值.

冒泡排序(优化)

冒泡排序的优化就没有选择排序的优化那么给力了, 还有可能产生负优化, 慎用!!

这次我们用[5, 6, 7, 9, 8]来举例.

--- scope of: popsort ---[5, 6, 7, 9, 8][5, 6, 7, 8, 9]--- scope of: opt_popsort ---[5, 6, 7, 9, 8][5, 6, 7, 8, 9]

这个优化并不是特别直观, 最好运行我的源码. 优化来自于如果已经排序完成则不用扫描空转. 上面的空行就是空转.

func optimizationPopSort(list: inout [Int]) { let n = list.count for i in 0..<n-1 {  var flag = 0  var j = 0  for _ in 0..<(n-1-i) {   if list[j] > list[j+1] {    list[j] ^= list[j+1]    list[j+1] ^= list[j]    list[j] ^= list[j+1]    flag = 1   }   j += 1  }  if flag == 0 {   break  } }}

就是加了一个标志位来判断是否跳出扫描.

快速排序

快速排序, 不是特别好举例, 但是最重要的一个排序.

func quickSort(list: inout [Int]) { func sort(list: inout [Int], low: Int, high: Int) {  if low < high {   let pivot = list[low]   var l = low; var h = high   while l < h {    while list[h] >= pivot && l < h {h -= 1}    list[l] = list[h]    while list[l] <= pivot && l < h {l += 1}    list[h] = list[l]   }   list[h] = pivot   sort(list: &list, low: low, high: l-1)   sort(list: &list, low: l+1, high: high)  } } sort(list: &list, low: 0, high: list.count - 1)}

我们直接看代码就能看出, 我们将下标0作为标尺, 进行扫描, 比其大的排右面, 比其小的排左边, 用递归的方式进行排序而成, 由于一次扫描后同时进行了模糊排序, 效率极高.

排序取舍

我们将上述所有的排序算法和系统的排序进行了比较, 以10000个随机数为例.

scope(of: "sort", execute: true) { scope(of: "systemsort", execute: true, action: {  let list = randomList(10000)  timing {_ = list.sorted()}//  print(list.sorted()) })  scope(of: "systemsort2", execute: true, action: {  let list = randomList(10000)  timing {_ = list.sorted {$0 < $1}}//  print(list.sorted {$0 < $1}) })  scope(of: "selectsort", execute: true, action: {  var list = randomList(10000)  timing {selectSort(list: &list)}//  print(list) }) scope(of: "opt_selectsort", execute: true, action: {  var list = randomList(10000)  timing {optimizationSelectSort(list: &list)}//  print(list) }) scope(of: "popsort", execute: true, action: {  var list = randomList(10000)  timing {popSort(list: &list)}//  print(list) }) scope(of: "opt_popsort", execute: true, action: {  var list = randomList(10000)  timing {optimizationPopSort(list: &list)}//  print(list) }) scope(of: "quicksort", execute: true, action: {  var list = randomList(10000)  timing {quickSort(list: &list)}//  print(list) })}
--- scope of: sort ------ scope of: systemsort ---timing: 0.010432243347168--- scope of: systemsort2 ---timing: 0.00398015975952148--- scope of: selectsort ---timing: 2.67806816101074--- scope of: opt_selectsort ---timing: 0.431572914123535--- scope of: popsort ---timing: 3.39597702026367--- scope of: opt_popsort ---timing: 3.59421491622925--- scope of: quicksort ---timing: 0.00454998016357422

我们可以看到, 其中我写的快排是效率最高的, 和系统的排序是一个数量级的, 而选择比冒泡的效率要高, 而令人疑惑的是同样是系统的排序加上{$0 < $1}比较规则, 效率会有数量级的提升.

现在大家知道如何选择排序算法了么?

二分搜索

@discardableResult func binSearch(list: [Int], find: Int) -> Int { var low = 0, high = list.count - 1 while low <= high {  let mid = (low + high) / 2  if find == list[mid] {return mid}  else if (find > list[mid]) {low = mid + 1}  else {high = mid - 1} } return -1;}
@discardableResult func recursiveBinSearch(list: [Int], find: Int) -> Int { func search(list: [Int], low: Int, high: Int, find: Int) -> Int {  if low <= high {   let mid = (low + high) / 2   if find == list[mid] {return mid}   else if (find > list[mid]) {    return search(list: list, low: mid+1, high: high, find: find)   }   else {    return search(list: list, low: low, high: mid-1, find: find)   }  }  return -1; } return search(list: list, low: 0, high: list.count - 1, find: find)}

二分搜索的原理就不多说了, 就是折半折半再折半, 这种搜索算法的关键就是要有序, 所以配合上合适的排序算法才是最重要的!

源码下载:github  或者 本地下载

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对VEVB武林网的支持。


注:相关教程知识阅读请移步到swift教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表