random 模块中的常用函数
代码如下:
random()
返回一个位于区间 [0,1] 内的实数;
uniform(a, b)
返回一个位于区间 [a,b] 内的实数;
randint(a, b)
返回一个位于区间 [a,b] 内的整数;
choice(sequence)
返回一个位于 sequence 中的元素,其中,sequence 为一个有序序列,如 list、string 或者 tuple 等类型;
randrange([start], stop[, step])
等效于 choice(range([start], stop[, step]));
shuffle(sequence [, random])
无返回值,用于打乱 sequence 中元素的排列顺序;
sample(sequence, n)
返回一个由 n 个 sequence 中的元素组成的分片,其中,sequence 也可以是 set 类型。
利用 itertools 得到排列、组合
代码如下:
permutations(sequence, k))
从序列 sequence 中得到包含 k 个元素的所有排列。
combinations(sequence, k))
从序列 sequence 中得到包含 k 个元素的所有组合。
羊车门问题
有一个抽奖节目,台上有三扇关闭的门,一扇门后面停着汽车,其余门后都是山羊,只有主持人知道每扇门后面是什么。参赛者可以选择一扇门,在开启它之前,主持人会开启另外一扇门,露出门后的山羊,然后允许参赛者更换自己的选择。问题是:参赛者更换选择后能否增加赢得汽车的机会?
有很多时候,我们并不知道自己的理论分析正确与否,但如果知道概率论中的 大数定律,又碰巧懂一点编程,无疑可以利用计算机重复模拟事件以求解问题。该问题的 Python 3.x 解答程序如下:
代码如下:
from random import *
def once(doors = 3): # 一次事件的模拟
car = randrange(doors) # 一扇门后面停着汽车
man = randrange(doors) # 参赛者预先选择一扇门
return car == man # 参赛者是否最初就选择到车
h = 0 # 坚持选择赢得汽车的次数
c = 0 # 改变选择赢得汽车的次数
times = int(1e6) # 重复实验的次数
for i in range(times):
if once(): h += 1
else: c += 1
print("维持选择:",h/times*100,"%/n改变选择:",c/times*100,"%")
运行结果:
维持选择: 33.268 %
改变选择: 66.732 %
扑克牌问题
概率论给我们带来了很多匪夷所思的反常结果,条件概率尤其如此。譬如:
四个人打扑克,其中一个人说,我手上有一个 A。请问他手上有不止一个 A 的概率是多少?
四个人打扑克,其中一个人说,我手上有一个黑桃 A。请问他手上有不止一个 A 的概率又是多少?
代码如下:
from random import *
cards = [i for i in range(52)]
新闻热点
疑难解答