考虑下述Python代码片段。对文件中的数据进行某些操作,然后将结果保存回文件中:
代码如下:
with open(filename) as f:
input = f.read()
output = do_something(input)
with open(filename, 'w') as f:
f.write(output)
看起来很简单吧?可能看起来并不像乍一看这么简单。我在产品服务器中调试应用,经常会出现奇怪的行为。
这是我看过的失效模式的例子:
失控的服务器进程溢出大量日志,磁盘被填满。write()在截断文件之后抛出异常,文件将会变成空的。
应用的几个实例并行执行。在各个实例结束之后,因为混合了多个实例的输出,文件内容最终变成了天书。
在完成了写操作之后,应用会触发一些后续操作。几秒钟后断电。在我们重启了服务器之后,我们再一次看到了旧的文件内容。已经传递给其它应用的数据与我们在文件中看到的不再一致。
下面没有什么新的内容。本文的目的是为在系统编程方面缺少经验的Python开发者提供常见的方法和技术。我将会提供代码例子,使得开发者可以很容易的将这些方法应用到自己的代码中。
“可靠性”意味着什么?
广义的讲,可靠性意味着在所有规定的条件下操作都能执行它所需的函数。至于文件的操作,这个函数就是创建,替换或者追加文件的内容的问题。这里可以从数据库理论上获得灵感。经典的事务模型的ACID性质作为指导来提高可靠性。
开始之前,让我们先看看我们的例子怎样和ACID4个性质扯上关系:
原子性(Atomicity)要求这个事务要么完全成功,要么完全失败。在上面的实例中,磁盘满了可能导致部分内容写入文件。另外,如果正当在写入内容时其它程序又在读取文件,它们可能获得是部分完成的版本,甚至会导致写错误
一致性(Consistency) 表示操作必须从系统的一个状态到另一个状态。一致性可以分为两部分:内部和外部一致性。内部一致性是指文件的数据结构是一致的。外部一致性是指文件的内容与它相关的数据是相符合的。在这个例子中,因为我们不了解这个应用,所以很难推断是否符合一致性。但是因为一致性需要原子性,我们至少可以说没有保证内部一致性。
隔离性(Isolation)如果在并发的执行事务中,多个相同的事务导致了不同的结果,就违反了隔离性。很明显上面的代码对操作失败或者其它隔离性失败都没有保护。
持久性(Durability)意味着改变是持久不变的。在我们告诉用户成功之前,我们必须确保我们的数据存储是可靠的并且不只是一个写缓存。上面的代码已经成功写入数据的前提是假设我们调用write()函数,磁盘I/O就立即执行。但是POSIX标准是不保证这个假设的。
尽可能使用数据库系统
新闻热点
疑难解答