理解新概念
Python V2.2 中引入了迭代器的思想。唔,这并不十分正确;这种思想的“苗头”早已出现在较老的函数 xrange() 以及文件方法 .xreadlines() 中了。通过引入 yield 关键字,Python 2.2 在内部实现的许多方面推广了这一概念,并使编程定制迭代器变得更为简单( yield 的出现使函数转换成生成器,而生成器反过来又返回迭代器)。
迭代器背后的动机有两方面。将数据作为序列处理通常是最简单的方法,而以线性顺序处理的序列通常并不需要都同时实际 存在。
x*() 前兆提供了这些原理的清晰示例。如果您想对某操作执行成千上万次,那么执行您的程序可能要花些时间,但该程序一般不需要占用大量内存。同样,对于许多类型的文件,可以一行一行地处理,且不需要将整个文件存储在内存中。最好对其它所有种类的序列也进行惰性处理;它们可能依赖于通过通道逐步到达的数据,或者依赖于一步一步执行的计算。
大多数时候,迭代器用在 for 循环内,就象真正的序列那样。迭代器提供了 .next() 方法,它可以被显式调用,但有百分之九十九的可能,您所看到的是以下行:
for x in iterator: do_something_with(x)
在对 iterator.next() 进行幕后调用而产生 StopIteration 异常时,该循环就被终止。顺便说一下,通过调用 iter(seq) ,实际序列可以被转换成迭代器 - 这不会节省任何内存,但是在下面讨论的函数中它会很有用。
Python 不断发展的分裂性格
Python 对函数编程(FP)的观点有点相互矛盾。一方面,许多 Python 开发人员轻视传统的 FP 函数 map() 、 filter() 和 reduce() ,常常建议使用“列表理解”来代替它们。但完整的 itertools 模块恰恰是由与这些函数类型完全相同的函数组成的,只不过这些函数对“惰性序列”(迭代器)操作,而不是对完整的序列(列表,元组)操作。而且,Python 2.3 中没有任何“迭代器理解”的语法,这似乎与列表理解拥有一样的动机。
我猜想 Python 最终会产生某种形式的迭代器理解,但这取决于找到合适于它们的自然语法。同时,在 itertools 模块中,我们拥有大量有用的组合函数。大致地,这些函数中的每一个都接受一些参数(通常包含一些基础迭代器)并返回一个新迭代器。例如,函数 ifilter() 、 imap() 和 izip() 都分别直接等同于缺少词首 i 的内置函数。
缺少的等价函数
itertools 中没有 ireduce() ,尽管按道理很自然地应该有这个函数;可能的 Python 实现是:
清单 1. ireduce() 的样本实现
def ireduce(func, iterable, init=None): if init is None: iterable = iter(iterable) curr = iterable.next() else: curr = init for x in iterable: curr = func(curr, x) yield curr
新闻热点
疑难解答