首页 > 编程 > Python > 正文

详解Python中的多线程编程

2020-02-23 00:37:43
字体:
来源:转载
供稿:网友

一、简介

       多线程编程技术可以实现代码并行性,优化处理能力,同时功能的更小划分可以使代码的可重用性更好。Python中threading和Queue模块可以用来实现多线程编程。
二、详解
1、线程和进程
       进程(有时被称为重量级进程)是程序的一次执行。每个进程都有自己的地址空间、内存、数据栈以及其它记录其运行轨迹的辅助数据。操作系统管理在其上运行的所有进程,并为这些进程公平地分配时间。进程也可以通过fork和spawn操作来完成其它的任务,不过各个进程有自己的内存空间、数据栈等,所以只能使用进程间通讯(IPC),而不能直接共享信息。
       线程(有时被称为轻量级进程)跟进程有些相似,不同的是所有的线程运行在同一个进程中,共享相同的运行环境。它们可以想像成是在主进程或“主线程”中并行运行的“迷你进程”。线程有开始、顺序执行和结束三部分,它有一个自己的指令指针,记录自己运行到什么地方。线程的运行可能被抢占(中断)或暂时的被挂起(也叫睡眠)让其它的线程运行,这叫做让步。一个进程中的各个线程之间共享同一片数据空间,所以线程之间可以比进程之间更方便地共享数据以及相互通讯。线程一般都是并发执行的,正是由于这种并行和数据共享的机制使得多个任务的合作变为可能。实际上,在单CPU的系统中,真正的并发是不可能的,每个线程会被安排成每次只运行一小会,然后就把CPU让出来,让其它的线程去运行。在进程的整个运行过程中,每个线程都只做自己的事,在需要的时候跟其它的线程共享运行的结果。多个线程共同访问同一片数据不是完全没有危险的,由于数据访问的顺序不一样,有可能导致数据结果的不一致的问题,这叫做竞态条件。而大多数线程库都带有一系列的同步原语,来控制线程的执行和数据的访问。
2、使用线程
(1)全局解释器锁(GIL)
       Python代码的执行由Python虚拟机(也叫解释器主循环)来控制。Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行。虽然 Python 解释器中可以“运行”多个线程,但在任意时刻只有一个线程在解释器中运行。
       对Python虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。在多线程环境中,Python 虚拟机按以下方式执行:a、设置 GIL;b、切换到一个线程去运行;c、运行指定数量的字节码指令或者线程主动让出控制(可以调用 time.sleep(0));d、把线程设置为睡眠状态;e、解锁 GIL;d、再次重复以上所有步骤。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表