Flask 是一个 Python 实现的 Web 开发微框架。这篇文章是一个讲述如何用它实现传送视频数据流的详细教程。
我敢肯定,现在你已经知道我在O'Reilly Media上发布了有关Flask的一本书和一些视频资料。在这些上面,Flask框架介绍的覆盖面是相当完整的,出于某种原因,也有一小部分的功能没有太多的提到,因此我认为在这里写一篇介绍它们的文章是一个好主意。
这篇文章是专门介绍流媒体的,这个有趣的功能让Flask应用拥有这样一种能力,以分割成小数据块的方式,高效地为大型请求提供数据,这可能要花费较长的时间。为了说明这个主题,我将告诉你如何构建一个实时视频流媒体服务器!
什么是流媒体?
流媒体是一种技术,其中,服务器以数据块的形式响应请求。我能想到一个原因来解释为什么这个技术可能是有用的:
非常大的响应 。对于非常大的响应而言,内存中收集的响应只返回给客户端,这是很低效的。另一种方法是将响应写入磁盘,然后使用flask.send_file()返回文件,但是这增加了I/O的组合。假设数据可以分块生成,以小块数据的方式给请求提供响应是一种更好的解决方案。
实时数据 。对于一些应用,需要请求返回的数据来自实时数据源。在这个方面一个非常好的例子就是提供一个实时视频或音频。很多安全摄像机使用这种技术将视频数据流传输给Web浏览器。
使用Flask实现流式传输
Flask通过使用生成器函数对流式响应提供本机支持。生成器是一个特别的函数,它可以中断和恢复。考虑一下下面的函数:
def gen(): yield 1 yield 2 yield 3
这是一个运行三步的函数,其中每步返回一个值。描述生成器如何实现超出了本文的范围,但如果你有点好奇,下面的shell会话将给你说明生成器是如何被使用的:
>>> x = gen()>>> x<generator object gen at 0x7f06f3059c30>>>> x.next()1>>> x.next()2>>> x.next()3>>> x.next()Traceback (most recent call last): File "<stdin>", line 1, in <module>StopIteration
在这个简单的例子中你能看到,一个生成器函数可以顺序得返回多个结果。Flask使用生成器 函数这一特性来实现流式传输。
下面的例子说明了如何使用流式传输能够产生大的数据表,而不必将整个表放入内存中:
from flask import Response, render_templatefrom app.models import Stock def generate_stock_table(): yield render_template('stock_header.html') for stock in Stock.query.all(): yield render_template('stock_row.html', stock=stock) yield render_template('stock_footer.html') @app.route('/stock-table')def stock_table(): return Response(generate_stock_table())
新闻热点
疑难解答