首页 > 编程 > Python > 正文

Python运用于数据分析的简单教程

2020-02-23 00:27:56
字体:
来源:转载
供稿:网友

最近,Analysis with Programming加入了Planet Python。作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析。具体内容如下:

    数据导入
        导入本地的或者web端的CSV文件;
    数据变换;
    数据统计描述;
    假设检验
        单样本t检验;
    可视化;
    创建自定义函数。

数据导入

这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:

import pandas as pd # Reading data locallydf = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv') # Reading data from webdata_url = "https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"df = pd.read_csv(data_url)

为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。

数据变换

既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据:

# Head of the dataprint df.head() # OUTPUT Abra Apayao Benguet Ifugao Kalinga0 1243 2934  148 3300 105531 4158 9235  4287 8063 352572 1787 1922  1955 1074  45443 17152 14501  3536 19607 316874 1266 2385  2530 3315  8520 # Tail of the dataprint df.tail() # OUTPUT  Abra Apayao Benguet Ifugao Kalinga74 2505 20878  3519 19737 1651375 60303 40065  7062 19422 6180876 6311 6756  3561 15910 2334977 13345 38902  2583 11096 6866378 2623 18264  3745 16787 16900

对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理。

在R语言中,数据列和行的名字通过colnames和rownames来分别进行提取。在Python中,我们则使用columns和index属性来提取,如下:

# Extracting column namesprint df.columns # OUTPUTIndex([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object') # Extracting row names or the indexprint df.index # OUTPUTInt64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], dtype='int64')            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表