本文将详细展示一个多类支持向量机分类器训练iris数据集来分类三种花。
SVM算法最初是为二值分类问题设计的,但是也可以通过一些策略使得其能进行多类分类。主要的两种策略是:一对多(one versus all)方法;一对一(one versus one)方法。
一对一方法是在任意两类样本之间设计创建一个二值分类器,然后得票最多的类别即为该未知样本的预测类别。但是当类别(k类)很多的时候,就必须创建k!/(k-2)!2!个分类器,计算的代价还是相当大的。
另外一种实现多类分类器的方法是一对多,其为每类创建一个分类器。最后的预测类别是具有最大SVM间隔的类别。本文将实现该方法。
我们将加载iris数据集,使用高斯核函数的非线性多类SVM模型。iris数据集含有三个类别,山鸢尾、变色鸢尾和维吉尼亚鸢尾(I.setosa、I.virginica和I.versicolor),我们将为它们创建三个高斯核函数SVM来预测。
# Multi-class (Nonlinear) SVM Example#----------------------------------## This function wll illustrate how to# implement the gaussian kernel with# multiple classes on the iris dataset.## Gaussian Kernel:# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)## X : (Sepal Length, Petal Width)# Y: (I. setosa, I. virginica, I. versicolor) (3 classes)## Basic idea: introduce an extra dimension to do# one vs all classification.## The prediction of a point will be the category with# the largest margin or distance to boundary.import matplotlib.pyplot as pltimport numpy as npimport tensorflow as tffrom sklearn import datasetsfrom tensorflow.python.framework import opsops.reset_default_graph()# Create graphsess = tf.Session()# Load the data# 加载iris数据集并为每类分离目标值。# 因为我们想绘制结果图,所以只使用花萼长度和花瓣宽度两个特征。# 为了便于绘图,也会分离x值和y值# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]iris = datasets.load_iris()x_vals = np.array([[x[0], x[3]] for x in iris.data])y_vals1 = np.array([1 if y==0 else -1 for y in iris.target])y_vals2 = np.array([1 if y==1 else -1 for y in iris.target])y_vals3 = np.array([1 if y==2 else -1 for y in iris.target])y_vals = np.array([y_vals1, y_vals2, y_vals3])class1_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==0]class1_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==0]class2_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==1]class2_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==1]class3_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==2]class3_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==2]# Declare batch sizebatch_size = 50# Initialize placeholders# 数据集的维度在变化,从单类目标分类到三类目标分类。# 我们将利用矩阵传播和reshape技术一次性计算所有的三类SVM。# 注意,由于一次性计算所有分类,# y_target占位符的维度是[3,None],模型变量b初始化大小为[3,batch_size]x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)y_target = tf.placeholder(shape=[3, None], dtype=tf.float32)prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)# Create variables for svmb = tf.Variable(tf.random_normal(shape=[3,batch_size]))# Gaussian (RBF) kernel 核函数只依赖x_datagamma = tf.constant(-10.0)dist = tf.reduce_sum(tf.square(x_data), 1)dist = tf.reshape(dist, [-1,1])sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))# Declare function to do reshape/batch multiplication# 最大的变化是批量矩阵乘法。# 最终的结果是三维矩阵,并且需要传播矩阵乘法。# 所以数据矩阵和目标矩阵需要预处理,比如xT·x操作需额外增加一个维度。# 这里创建一个函数来扩展矩阵维度,然后进行矩阵转置,# 接着调用TensorFlow的tf.batch_matmul()函数def reshape_matmul(mat): v1 = tf.expand_dims(mat, 1) v2 = tf.reshape(v1, [3, batch_size, 1]) return(tf.matmul(v2, v1))# Compute SVM Model 计算对偶损失函数first_term = tf.reduce_sum(b)b_vec_cross = tf.matmul(tf.transpose(b), b)y_target_cross = reshape_matmul(y_target)second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)),[1,2])loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term)))# Gaussian (RBF) prediction kernel# 现在创建预测核函数。# 要当心reduce_sum()函数,这里我们并不想聚合三个SVM预测,# 所以需要通过第二个参数告诉TensorFlow求和哪几个rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))# 实现预测核函数后,我们创建预测函数。# 与二类不同的是,不再对模型输出进行sign()运算。# 因为这里实现的是一对多方法,所以预测值是分类器有最大返回值的类别。# 使用TensorFlow的内建函数argmax()来实现该功能prediction_output = tf.matmul(tf.multiply(y_target,b), pred_kernel)prediction = tf.arg_max(prediction_output-tf.expand_dims(tf.reduce_mean(prediction_output,1), 1), 0)accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target,0)), tf.float32))# Declare optimizermy_opt = tf.train.GradientDescentOptimizer(0.01)train_step = my_opt.minimize(loss)# Initialize variablesinit = tf.global_variables_initializer()sess.run(init)# Training looploss_vec = []batch_accuracy = []for i in range(100): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = x_vals[rand_index] rand_y = y_vals[:,rand_index] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x, y_target: rand_y, prediction_grid:rand_x}) batch_accuracy.append(acc_temp) if (i+1)%25==0: print('Step #' + str(i+1)) print('Loss = ' + str(temp_loss))# 创建数据点的预测网格,运行预测函数x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02))grid_points = np.c_[xx.ravel(), yy.ravel()]grid_predictions = sess.run(prediction, feed_dict={x_data: rand_x, y_target: rand_y, prediction_grid: grid_points})grid_predictions = grid_predictions.reshape(xx.shape)# Plot points and gridplt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)plt.plot(class1_x, class1_y, 'ro', label='I. setosa')plt.plot(class2_x, class2_y, 'kx', label='I. versicolor')plt.plot(class3_x, class3_y, 'gv', label='I. virginica')plt.title('Gaussian SVM Results on Iris Data')plt.xlabel('Pedal Length')plt.ylabel('Sepal Width')plt.legend(loc='lower right')plt.ylim([-0.5, 3.0])plt.xlim([3.5, 8.5])plt.show()# Plot batch accuracyplt.plot(batch_accuracy, 'k-', label='Accuracy')plt.title('Batch Accuracy')plt.xlabel('Generation')plt.ylabel('Accuracy')plt.legend(loc='lower right')plt.show()# Plot loss over timeplt.plot(loss_vec, 'k-')plt.title('Loss per Generation')plt.xlabel('Generation')plt.ylabel('Loss')plt.show()
新闻热点
疑难解答