首页 > 编程 > Python > 正文

Python解决八皇后问题示例

2020-02-22 23:48:23
字体:
来源:转载
供稿:网友

本文实例讲述了Python解决八皇后问题的方法。分享给大家供大家参考,具体如下:

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的n皇后摆放问题:这时棋盘的大小变为n1×n1,而皇后个数也变成n2。而且仅当 n2 = 1 或 n1 ≥ 3 时问题有解。

这是一个典型的回溯算法,我们可以将问题进行分解:

首先,我们要想到某种方法来解决冲突检测问题,即不能令棋子处于能相互吃掉的位置——相邻、左右对角线。

其次,运用回溯的方法,求得问题的解。此处具体为函数的递归调用,当调用到棋盘的最后一行,便跳出,求得解。

最后,将我们的解打印出来。难点在于对递归调用函数的理解。

这仅仅是思路,是我们必须要解决的问题,但并不代表程序的运行流程。

具体代码如下:

#-*- coding:utf-8 -*-import random#冲突检查,在定义state时,采用state来标志每个皇后的位置,其中索引用来表示横坐标,基对应的值表示纵坐标,例如: state[0]=3,表示该皇后位于第1行的第4列上def conflict(state, nextX):  nextY = len(state)#  print(nextY),  for i in range(nextY):    #如果下一个皇后的位置与当前的皇后位置相邻(包括上下,左右)或在同一对角线上,则说明有冲突,需要重新摆放    if abs(state[i]-nextX) in (0, nextY-i):#纵坐标减去下一个皇后的横坐标的绝对值 处于 0到下一皇后纵坐标减i则冲突      return True  return False#采用生成器的方式来产生每一个皇后的位置,并用递归来实现下一个皇后的位置。def queens(num, state=()):  #num = 8#  print("%d "%len(state)),  for pos in range(num):    if not conflict(state, pos): #如果没有冲突      #产生当前皇后的位置信息      if len(state) == num-1:        yield (pos, ) #生成元组      #否则,把当前皇后的位置信息,添加到状态列表里,并传递给下一皇后。      else:        for result in queens(num, state+(pos,)):          yield (pos, ) + result          #result这个变量代表的是quees返回的元组#若是最后一行 对于 pos in range(num)调用conflict(state, num) ,#如果没有冲突,生成元组#若不是最后一行 对于pos in range(num)调用conflict(state, pos),#如果没有冲突,state更新,递归调用queens(num, state) state将更新#为了直观表现棋盘,用X表示每个皇后的位置def prettyprint(solution):  def line(pos, length=len(solution)):    return '. ' * (pos) + 'X ' + '. '*(length-pos-1)  for pos in solution:    print line(pos)if __name__ == "__main__":#来判断是否是在直接运行该.py文件  prettyprint(random.choice(list(queens(8))))            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表