在numpy的ndarray类型中,似乎没有直接返回特定索引的方法,我只找到了where函数,但是where函数对于寻找某个特定值对应的索引很有用,对于返回一定区间内值的索引不是很有效,至少我没有弄明白应该如何操作尴尬。下面先说一下where函数的用法吧。
(1)where函数的使用场景:
例如现在我生成了一个数组:
import numpy as np arr=np.array([1,1,1,134,45,3,46,45,65,3,23424,234,12,12,3,546,1,2])
现在arr是一个含有18个元素的ndarray类型的数组,后面就用数组来称呼它吧。假如我想返回数组中所有元素值为3所对应的索引位置,那么通过where函数可以很轻松地完成。
print np.where(arr==3)
它会返回一个包含所有值为3对应的索引位置的元组,如下图:
可以看到在索引为5、9、14的地方所对应的元素值为3。通过这样的方式可以轻松达到目的。但是对于一定变化范围内的索引这样就不行了。下面的方法是自己想出来的折衷办法,比较笨,高手清喷。
(2)通过一个辅助的数组来解决一定范围内值索引的查找
我们建一个标识元素索引的数组,然后通过它来显示符合条件的元素对应的索引。还是刚才的数组,假如我现在要返回元素值在3到100之间值的索引。我可以生成一个和arr相同大小的数组,然后首先通过一次筛选找到大于3的元素对应索引的数组,继而在其中再次筛选,最终得到想要的结果。代码如下:
b=np.arange(len(arr))#生成和arr相同长度的数组
c=b[arr>3]#c存放的就是arr中大于3的元素对应的索引 #最后通过遍历c数组,选择3到100之间的值打印出来 for i in range(len(c)): if arr[c[i]]<100: print c[i],
下面看一下执行的效果:
可以看到程序将所有介于3和100之间的元素对应的索引值打了出来,如果想同时获得索引值和相应的元素,只需将上面的“print c[i]”, 替换为 “print c[i],arr[c[i]]”即可。
当然这种方法也适用于选择某个特定值对应的索引,例如我想找到所有3对应的位置,可以用print b[arr==3]即可打印出所有值为3的元素所对应的索引。其实不论怎么做,都是用到了数组进行关系运算后生成布尔数组,然后让数组中为True的地方进行显示。
当然还可以通过两次进行筛选,分别筛选出大于3的元素和小于100的元素对应的索引数组,然后两个数组做交集处理,在numpy中有一个intersect1d函数可以进行这样的运算,但是仍然麻烦。目前只能想到这些办法,不知道有哪位高手有更好的方法,欢迎大家一起交流一下。
新闻热点
疑难解答