首页 > 编程 > Python > 正文

pandas数值计算与排序方法

2020-02-22 23:39:44
字体:
来源:转载
供稿:网友

以下代码是基于python3.5.0编写的

import pandasfood_info = pandas.read_csv("food_info.csv")# ---------------------特定列加减乘除-------------------------print(food_info["Iron_(mg)"])div_1000 = food_info["Iron_(mg)"] / 1000add_100 = food_info["Iron_(mg)"] + 100sub_100 = food_info["Iron_(mg)"] - 100mult_2 = food_info["Iron_(mg)"]*2# ---------------------某两列相乘---------------------------water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]# ----------------------把某一列除1000,再添加新列----------------------------iron_grams = food_info["Iron_(mg)"] / 1000food_info["Iron_(g)"] = iron_grams#-------------------Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))--------------weighted_protein = food_info["Protein_(g)"] * 2weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]initial_rating = weighted_protein + weighted_fat#----------------------------数据归一化-----------------------------------max_calories = food_info["Energ_Kcal"].max()              #找列最大值normalized_calories = food_info["Energ_Kcal"] / max_caloriesnormalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()food_info["Normalized_Protein"] = normalized_proteinfood_info["Normalized_Fat"] = normalized_fat# -------------------------------排序----------------------------------food_info.sort_values("Sodium_(mg)", inplace=True)           #升序,inplace=True表示不从建DataFrameprint(food_info["Sodium_(mg)"])food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)  #降序,ascending=False表示降序print(food_info["Sodium_(mg)"])

以上这篇pandas数值计算与排序方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林站长站。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表