首页 > 编程 > Python > 正文

opencv python 基于KNN的手写体识别的实例

2020-02-15 22:40:22
字体:
来源:转载
供稿:网友

OCR of Hand-written Data using kNN

OCR of Hand-written Digits

我们的目标是构建一个可以读取手写数字的应用程序, 为此,我们需要一些train_data和test_data. OpenCV附带一个images digits.png(在文件夹opencv/sources/samples/data/中),它有5000个手写数字(每个数字500个,每个数字是20x20图像).所以首先要将图片切割成5000个不同图片,每个数字变成一个单行400像素.前面的250个数字作为训练数据,后250个作为测试数据.

import numpy as npimport cv2import matplotlib.pyplot as pltimg = cv2.imread('digits.png')gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# Now we split the image to 5000 cells, each 20x20 sizecells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]# Make it into a Numpy array. It size will be (50,100,20,20)x = np.array(cells)# Now we prepare train_data and test_data.train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400)# Create labels for train and test datak = np.arange(10)train_labels = np.repeat(k,250)[:,np.newaxis]test_labels = train_labels.copy()# Initiate kNN, train the data, then test it with test data for k=1knn = cv2.ml.KNearest_create()knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)ret,result,neighbours,dist = knn.findNearest(test,k=5)# Now we check the accuracy of classification# For that, compare the result with test_labels and check which are wrongmatches = result==test_labelscorrect = np.count_nonzero(matches)accuracy = correct*100.0/result.sizeprint( accuracy )

输出:91.76

进一步提高准确率的方法是增加训练数据,特别是错误的数据.每次训练时最好是保存训练数据,以便下次使用.

# save the datanp.savez('knn_data.npz',train=train, train_labels=train_labels)# Now load the datawith np.load('knn_data.npz') as data:  print( data.files )  train = data['train']  train_labels = data['train_labels']

OCR of English Alphabets

在opencv / samples / data /文件夹中附带一个数据文件letter-recognition.data.在每一行中,第一列是一个字母表,它是我们的标签. 接下来的16个数字是它的不同特征.

import numpy as npimport cv2import matplotlib.pyplot as plt# Load the data, converters convert the letter to a numberdata= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',',          converters= {0: lambda ch: ord(ch)-ord('A')})# split the data to two, 10000 each for train and testtrain, test = np.vsplit(data,2)# split trainData and testData to features and responsesresponses, trainData = np.hsplit(train,[1])labels, testData = np.hsplit(test,[1])# Initiate the kNN, classify, measure accuracy.knn = cv2.ml.KNearest_create()knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)ret, result, neighbours, dist = knn.findNearest(testData, k=5)correct = np.count_nonzero(result == labels)accuracy = correct*100.0/10000print( accuracy )            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表