终于找到bug原因!记一下;还是不熟悉平台的原因造成的!
Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错?
model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 modelV.py 分别训练好模型,然后再在 model.py 里加载进来:
# -*- coding: utf8 -*-import tensorflow as tfclass ModelV(): def __init__(self): self.v1 = tf.Variable(66, name="v1") self.v2 = tf.Variable(77, name="v2") self.save_path = "model_v/model.ckpt" self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session() def train(self): self.sess.run(self.init) print 'v2', self.v2.eval(self.sess) self.saver.save(self.sess, self.save_path) print "ModelV saved." def predict(self): all_vars = tf.trainable_variables() for v in all_vars: print(v.name) self.saver.restore(self.sess, self.save_path) print "ModelV restored." print 'v2', self.v2.eval(self.sess) print '------------------------------------------------------------------'class ModelP(): def __init__(self): self.p1 = tf.Variable(88, name="p1") self.p2 = tf.Variable(99, name="p2") self.save_path = "model_p/model.ckpt" self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session() def train(self): self.sess.run(self.init) print 'p2', self.p2.eval(self.sess) self.saver.save(self.sess, self.save_path) print "ModelP saved." def predict(self): all_vars = tf.trainable_variables() for v in all_vars: print v.name self.saver.restore(self.sess, self.save_path) print "ModelP restored." print 'p2', self.p2.eval(self.sess) print '---------------------------------------------------------------------'if __name__ == '__main__': v = ModelV() p = ModelP() v.predict() #v.train() p.predict() #p.train()
这里 tf.global_variables_initializer() 很关键! 尽管你是分别在对象 ModelP 和 ModelV 内部分配和定义的 tf.Variable(),即 v1 v2 和 p1 p2,但是 对 tf 这个模块而言, 这些都是全局变量,可以通过以下代码查看所有的变量,你就会发现同一个文件中同时运行 ModelP 和 ModelV 在初始化之后都打印出了一样的变量,这个是问题的关键所在:
all_vars = tf.trainable_variables()for v in all_vars: print(v.name)
错误。你可以交换 modelP 和 modelV 初始化的顺序,看看错误信息的变化
v1:0v2:0p1:0p2:0ModelV restored.v2 77v1:0v2:0p1:0p2:0W tensorflow/core/framework/op_kernel.cc:975] Not found: Key v2 not found in checkpointW tensorflow/core/framework/op_kernel.cc:975] Not found: Key v1 not found in checkpoint
新闻热点
疑难解答