首页 > 编程 > Python > 正文

对tf.reduce_sum tensorflow维度上的操作详解

2020-02-15 22:32:14
字体:
来源:转载
供稿:网友

tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明。官方给的api

reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)

input_tensor:表示输入

axis:表示在那个维度进行sum操作。

keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度。

reduction_indices:为了跟旧版本的兼容,现在已经不使用了。

官方的例子:

# 'x' is [[1, 1, 1]#   [1, 1, 1]]tf.reduce_sum(x) ==> 6tf.reduce_sum(x, 0) ==> [2, 2, 2]tf.reduce_sum(x, 1) ==> [3, 3]tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]tf.reduce_sum(x, [0, 1]) ==> 6

自己做的例子:

import tensorflow as tfimport numpy as npx = np.asarray([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])x_p = tf.placeholder(tf.int32,[2,2,3])y = tf.reduce_sum(x_p,0) #修改这里with tf.Session() as sess: y = sess.run(y,feed_dict={x_p:x}) print y
axis= 0:[[ 8 10 12] [14 16 18]] 1+7 2+8 3+7 …….. axis=1: [[ 5 7 9] [17 19 21]] 1+4 2+5 3 +6 …. axis=2: [[ 6 15] [24 33]] 1+2+3 4+5+6…..

以上这篇对tf.reduce_sum tensorflow维度上的操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林站长站。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表