本文实例为大家分享了python实现泊松图像融合的具体代码,供大家参考,具体内容如下
```from __future__ import divisionimport numpy as np import scipy.fftpackimport scipy.ndimageimport cv2import matplotlib.pyplot as plt #sns.set(style="darkgrid")def DST(x): """ Converts Scipy's DST output to Matlab's DST (scaling). """ X = scipy.fftpack.dst(x,type=1,axis=0) return X/2.0def IDST(X): """ Inverse DST. Python -> Matlab """ n = X.shape[0] x = np.real(scipy.fftpack.idst(X,type=1,axis=0)) return x/(n+1.0)def get_grads(im): """ return the x and y gradients. """ [H,W] = im.shape Dx,Dy = np.zeros((H,W),'float32'), np.zeros((H,W),'float32') j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1) Dx[j,k] = im[j,k+1] - im[j,k] Dy[j,k] = im[j+1,k] - im[j,k] return Dx,Dydef get_laplacian(Dx,Dy): """ return the laplacian """ [H,W] = Dx.shape Dxx, Dyy = np.zeros((H,W)), np.zeros((H,W)) j,k = np.atleast_2d(np.arange(0,H-1)).T, np.arange(0,W-1) Dxx[j,k+1] = Dx[j,k+1] - Dx[j,k] Dyy[j+1,k] = Dy[j+1,k] - Dy[j,k] return Dxx+Dyydef poisson_solve(gx,gy,bnd): # convert to double: gx = gx.astype('float32') gy = gy.astype('float32') bnd = bnd.astype('float32') H,W = bnd.shape L = get_laplacian(gx,gy) # set the interior of the boundary-image to 0: bnd[1:-1,1:-1] = 0 # get the boundary laplacian: L_bp = np.zeros_like(L) L_bp[1:-1,1:-1] = -4*bnd[1:-1,1:-1] / + bnd[1:-1,2:] + bnd[1:-1,0:-2] / + bnd[2:,1:-1] + bnd[0:-2,1:-1] # delta-x L = L - L_bp L = L[1:-1,1:-1] # compute the 2D DST: L_dst = DST(DST(L).T).T #first along columns, then along rows # normalize: [xx,yy] = np.meshgrid(np.arange(1,W-1),np.arange(1,H-1)) D = (2*np.cos(np.pi*xx/(W-1))-2) + (2*np.cos(np.pi*yy/(H-1))-2) L_dst = L_dst/D img_interior = IDST(IDST(L_dst).T).T # inverse DST for rows and columns img = bnd.copy() img[1:-1,1:-1] = img_interior return imgdef blit_images(im_top,im_back,scale_grad=1.0,mode='max'): """ combine images using poission editing. IM_TOP and IM_BACK should be of the same size. """ assert np.all(im_top.shape==im_back.shape) im_top = im_top.copy().astype('float32') im_back = im_back.copy().astype('float32') im_res = np.zeros_like(im_top) # frac of gradients which come from source: for ch in xrange(im_top.shape[2]): ims = im_top[:,:,ch] imd = im_back[:,:,ch] [gxs,gys] = get_grads(ims) [gxd,gyd] = get_grads(imd) gxs *= scale_grad gys *= scale_grad gxs_idx = gxs!=0 gys_idx = gys!=0 # mix the source and target gradients: if mode=='max': gx = gxs.copy() gxm = (np.abs(gxd))>np.abs(gxs) gx[gxm] = gxd[gxm] gy = gys.copy() gym = np.abs(gyd)>np.abs(gys) gy[gym] = gyd[gym] # get gradient mixture statistics: f_gx = np.sum((gx[gxs_idx]==gxs[gxs_idx]).flat) / (np.sum(gxs_idx.flat)+1e-6) f_gy = np.sum((gy[gys_idx]==gys[gys_idx]).flat) / (np.sum(gys_idx.flat)+1e-6) if min(f_gx, f_gy) <= 0.35: m = 'max' if scale_grad > 1: m = 'blend' return blit_images(im_top, im_back, scale_grad=1.5, mode=m) elif mode=='src': gx,gy = gxd.copy(), gyd.copy() gx[gxs_idx] = gxs[gxs_idx] gy[gys_idx] = gys[gys_idx] elif mode=='blend': # from recursive call: # just do an alpha blend gx = gxs+gxd gy = gys+gyd im_res[:,:,ch] = np.clip(poisson_solve(gx,gy,imd),0,255) return im_res.astype('uint8')def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundariesif __name__=='__main__': """ example usage: """ import seaborn as sns im_src = cv2.imread('../f01006.jpg').astype('float32') im_dst = cv2.imread('../f01006-5.jpg').astype('float32') mu = np.mean(np.reshape(im_src,[im_src.shape[0]*im_src.shape[1],3]),axis=0) # print mu sz = (1920,1080) im_src = cv2.resize(im_src,sz) im_dst = cv2.resize(im_dst,sz) im0 = im_dst[:,:,0] > 100 im_dst[im0,:] = im_src[im0,:] im_dst[~im0,:] = 50 im_dst = cv2.GaussianBlur(im_dst,(5,5),5) im_alpha = 0.8*im_dst + 0.2*im_src # plt.imshow(im_dst) # plt.show() im_res = blit_images(im_src,im_dst) import scipy scipy.misc.imsave('orig.png',im_src[:,:,::-1].astype('uint8')) scipy.misc.imsave('alpha.png',im_alpha[:,:,::-1].astype('uint8')) scipy.misc.imsave('poisson.png',im_res[:,:,::-1].astype('uint8')) im_actual_L = cv2.cvtColor(im_src.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0] im_alpha_L = cv2.cvtColor(im_alpha.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0] im_poisson_L = cv2.cvtColor(im_res.astype('uint8'),cv2.cv.CV_BGR2Lab)[:,:,0] # plt.imshow(im_alpha_L) # plt.show() for i in xrange(500,im_alpha_L.shape[1],5): l_actual = im_actual_L[i,:]#-im_actual_L[i,:-1] l_alpha = im_alpha_L[i,:]#-im_alpha_L[i,:-1] l_poisson = im_poisson_L[i,:]#-im_poisson_L[i,:-1] with sns.axes_style("darkgrid"): plt.subplot(2,1,2) #plt.plot(l_alpha,label='alpha') plt.plot(l_poisson,label='poisson') plt.hold(True) plt.plot(l_actual,label='actual') plt.legend() # find "text regions": is_txt = ~im0[i,:] t_loc = contiguous_regions(is_txt) ax = plt.gca() for b0,b1 in t_loc: ax.axvspan(b0, b1, facecolor='red', alpha=0.1) with sns.axes_style("white"): plt.subplot(2,1,1) plt.imshow(im_alpha[:,:,::-1].astype('uint8')) plt.hold(True) plt.plot([0,im_alpha_L.shape[0]-1],[i,i],'r') plt.axis('image') plt.show() plt.subplot(1,3,1) plt.imshow(im_src[:,:,::-1].astype('uint8')) plt.subplot(1,3,2) plt.imshow(im_alpha[:,:,::-1].astype('uint8')) plt.subplot(1,3,3) plt.imshow(im_res[:,:,::-1]) #cv2 reads in BGR plt.show()
新闻热点
疑难解答