首页 > 编程 > Python > 正文

利用pandas进行大文件计数处理的方法

2020-02-15 22:31:15
字体:
来源:转载
供稿:网友

Pandas读取大文件

要处理的是由探测器读出的脉冲信号,一组数据为两列,一列为时间,一列为脉冲能量,数据量在千万级,为了有一个直接的认识,先使用Pandas读取一些

import pandas as pddata = pd.read_table('filename.txt', iterator=True)chunk = data.get_chunk(5) 

而输出是这样的:

Out[4]: 332.977889999979 -0.0164794921875 0 332.97790 -0.022278 1 332.97791 -0.026855 2 332.97792 -0.030518 3 332.97793 -0.045776 4 332.97794 -0.032654

DataFram基本用法

这里,data只是个容器,pandas.io.parsers.TextFileReader。

使用astype可以实现dataframe字段类型转换

输出数据中,每组数据会多处一行,因为get_chunk返回的是pandas.core.frame.DataFrame格式, 而data在读取过程中并没有指定DataFrame的columns,因此在get_chunk过程中,默认将第一组数据作为columns。因此需要在读取过程中指定names即DataFrame的columns。

import pandas as pddata = pd.read_table('filename.txt', iterator=True, names=['time', 'energe'])chunk = data.get_chunk(5) data['energe'] = df['energe'].astype('int')

输出为

Out[6]:

index time energe
0 332.97789 -0.016479
1 332.97790 -0.022278
2 332.97791 -0.026855
3 332.97792 -0.030518
4 332.97793 -0.045776

DataFram存储和索引

这里讲一下DataFrame这个格式,与一般二维数据不同(二维列表等),DataFrame既有行索引又有列索引,因此在建立一个DataFrame数据是

DataFrame(data, columns=[‘year', ‘month', ‘day'], index=[‘one', ‘two', ‘three'])

year month day
0 2010 4 1
1 2011 5 2
2 2012 6 3
3 2013 7 5
4 2014 8 9

而pd.read_table中的names就是指定DataFrame的columns,而index自动设置。 而DataFrame的索引格式有很多

类型 说明 例子
obj[val] 选取单列或者一组列
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表