首页 > 编程 > Python > 正文

浅谈利用numpy对矩阵进行归一化处理的方法

2020-02-15 22:20:30
字体:
来源:转载
供稿:网友

本文不讲归一化原理,只介绍实现(事实上看了代码就会懂原理),代码如下:

def Normalize(data): m = np.mean(data) mx = max(data) mn = min(data) return [(float(i) - m) / (mx - mn) for i in data]

代码只有5行并不复杂,但是需要注意的一点是一定要将计算的均值以及矩阵的最大、最小值存为变量放到循环里,如果直接在循环里计算对应的值会造成归一化特别慢,笔者之前有过深切的酸爽体验….

以上这篇浅谈利用numpy对矩阵进行归一化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林站长站。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表