首页 > 编程 > Python > 正文

将tensorflow的ckpt模型存储为npy的实例

2020-02-15 22:18:45
字体:
来源:转载
供稿:网友

实例如下所示:

#coding=gbkimport numpy as npimport tensorflow as tffrom tensorflow.python import pywrap_tensorflowcheckpoint_path='model.ckpt-5000'#your ckpt pathreader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)var_to_shape_map=reader.get_variable_to_shape_map()alexnet={}alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']add_info = ['weights','biases']alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}for key in var_to_shape_map: #print ("tensor_name",key) str_name = key # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor if str_name.find('Adam') > -1:  continue print('tensor_name:' , str_name) if str_name.find('/') > -1:  names = str_name.split('/')  # first layer name and weight, bias  layer_name = names[0]  layer_add_info = names[1] else:  layer_name = str_name  layer_add_info = None if layer_add_info == 'weights':  alexnet[layer_name][0]=reader.get_tensor(key) elif layer_add_info == 'biases':  alexnet[layer_name][1] = reader.get_tensor(key) else:  alexnet[layer_name] = reader.get_tensor(key)# save npynp.save('alexnet_pointing04.npy',alexnet)print('save npy over...')#print(alexnet['conv1'][0].shape)#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林站长站。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表