read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式。pandas中还有读取表格的通用函数read_table。
接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符。
查看csv文件的内容如下;
In [10]: cat data.csvindex,name,comment,,,,1,name_01,coment_01,,,,2,name_02,coment_02,,,,3,name_03,coment_03,,,,4,name_04,coment_04,,,,5,name_05,coment_05,,,,6,name_06,coment_06,,,,7,name_07,coment_07,,,,8,name_08,coment_08,,,,9,name_09,coment_09,,,,10,name_10,coment_10,,,,11,name_11,coment_11,,,,12,name_12,coment_12,,,,13,name_13,coment_13,,,,14,name_14,coment_14,,,,15,name_15,coment_15,,,,16,name_16,coment_16,,,,17,name_17,coment_17,,,,18,name_18,coment_18,,,,19,name_19,coment_19,,,,20,name_20,coment_20,,,,21,name_21,coment_21,,,,
使用pandas读取文件内容如下:In [11]: data1 = pd.read_table('data.csv',sep=',')
In [12]: type(data1)Out[12]: pandas.core.frame.DataFrame
In [13]: data1Out[13]: index name comment Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 60 1 name_01 coment_01 NaN NaN NaN NaN1 2 name_02 coment_02 NaN NaN NaN NaN2 3 name_03 coment_03 NaN NaN NaN NaN3 4 name_04 coment_04 NaN NaN NaN NaN4 5 name_05 coment_05 NaN NaN NaN NaN5 6 name_06 coment_06 NaN NaN NaN NaN6 7 name_07 coment_07 NaN NaN NaN NaN7 8 name_08 coment_08 NaN NaN NaN NaN8 9 name_09 coment_09 NaN NaN NaN NaN9 10 name_10 coment_10 NaN NaN NaN NaN10 11 name_11 coment_11 NaN NaN NaN NaN11 12 name_12 coment_12 NaN NaN NaN NaN12 13 name_13 coment_13 NaN NaN NaN NaN13 14 name_14 coment_14 NaN NaN NaN NaN14 15 name_15 coment_15 NaN NaN NaN NaN15 16 name_16 coment_16 NaN NaN NaN NaN16 17 name_17 coment_17 NaN NaN NaN NaN17 18 name_18 coment_18 NaN NaN NaN NaN18 19 name_19 coment_19 NaN NaN NaN NaN19 20 name_20 coment_20 NaN NaN NaN NaN20 21 name_21 coment_21 NaN NaN NaN NaN
不过在几番尝试下来,发现这个分隔符缺省的时候倒是也能够读出数据。
In [16]: data2 = pd.read_table('data.csv')
In [17]: data2Out[17]: index,name,comment,,,,0 1,name_01,coment_01,,,,1 2,name_02,coment_02,,,,2 3,name_03,coment_03,,,,3 4,name_04,coment_04,,,,4 5,name_05,coment_05,,,,5 6,name_06,coment_06,,,,6 7,name_07,coment_07,,,,7 8,name_08,coment_08,,,,8 9,name_09,coment_09,,,,9 10,name_10,coment_10,,,,10 11,name_11,coment_11,,,,11 12,name_12,coment_12,,,,12 13,name_13,coment_13,,,,13 14,name_14,coment_14,,,,14 15,name_15,coment_15,,,,15 16,name_16,coment_16,,,,16 17,name_17,coment_17,,,,17 18,name_18,coment_18,,,,18 19,name_19,coment_19,,,,19 20,name_20,coment_20,,,,20 21,name_21,coment_21,,,,
新闻热点
疑难解答