前言:
最近开始学习tensorflow框架,选修课让任选一种框架实现mnist手写数字的识别分类。小詹也就随着大流选择了 tf 框架,跟着教程边学边做,小詹用了不同的神经网络实现了识别分类,其中有一个步骤是将训练过程得到的模型进行保存,在之后的测试中加载并使用该模型。想到这种先保存再加载调用的过程,之前很多地方都遇到过呀,最简单常用的就是python中文件的存取哇!于是乎,小詹夜观星象,就着手整理记录各种文件存取的骚操作,具体如下。
(PS:虽然我知道技术文章太长,耐心看完的人很少,曝光率和点赞率会下降,更不会有什么收益,但是还是想记录下自己学习过程中的一些笔记,以后自己或者别人查起来方便些!)
方法预览
●Python内置方法
●numpy模块方法
●os模块方法
●csv模块方法
Python内置方法
在不需要借助任何外界库的前提下,python内置方法其实也可以完成我们需要的文件存取任务,这里主要介绍几种python内置方法的使用方式,最后再给出一个实际案例展示:
1、open()方法
file object = open(file_name [, access_mode][, buffering])
该方法意义在于按照指定模式打开文件,其中,各个参数的含义如下:
file_name:file_name变量是一个包含了你要访问的文件名称的字符串值。
access_mode:access_mode决定了打开文件的模式:只读,写入,追加等。所有可取值见如下的完全列表。这个参数是非强制的,默认文件访问模式为只读(r)。常用文件访问模式见下图(来源于网络)
buffering: 如果buffering的值被设为0,就不会有寄存。如果buffering的值取1,访问文件时会寄存行。如果将buffering的值设为大于1的整数,表明了这就是的寄存区的缓冲大小。如果取负值,寄存区的缓冲大小则为系统默认。
2、close()方法
fileObject.close()
File 对象的 close()方法刷新缓冲区里任何还没写入的信息,并关闭该文件,这之后便不能再进行写入。当一个文件对象的引用被重新指定给另一个文件时,Python 会关闭之前的文件。用 close()方法关闭文件是一个很好的习惯。
3、write ()方法
fileObject.write(string)
write()方法可将任何字符串写入一个打开的文件。需要重点注意的是,Python字符串可以是二进制数据,而不是仅仅是文字。write()方法不会在字符串的结尾添加换行符('/n');被传递的参数是要写入到已打开文件的内容。
4、read () 方法
fileObject.read([count])read()
新闻热点
疑难解答