首页 > 编程 > Python > 正文

Python Grid使用和布局详解

2020-02-15 22:06:39
字体:
来源:转载
供稿:网友

本文实例为大家分享了Python Grid使用和布局的具体代码,供大家参考,具体内容如下

#!/usr/bin/env python import vtk # 这个示例主要用于将不同的图像对象显示到指定的Grid中 def main(): colors = vtk.vtkNamedColors()  # Set the background color. colors.SetColor("BkgColor", [51, 77, 102, 255])  titles = list() textMappers = list() textActors = list()  uGrids = list() mappers = list() actors = list() renderers = list()  uGrids.append(MakeHexagonalPrism()) titles.append('Hexagonal Prism') uGrids.append(MakeHexahedron()) titles.append('Hexahedron') uGrids.append(MakePentagonalPrism()) titles.append('Pentagonal Prism')  uGrids.append(MakePolyhedron()) titles.append('Polyhedron') uGrids.append(MakePyramid()) titles.append('Pyramid') uGrids.append(MakeTetrahedron()) titles.append('Tetrahedron')  uGrids.append(MakeVoxel()) titles.append('Voxel') uGrids.append(MakeWedge()) titles.append('Wedge')  renWin = vtk.vtkRenderWindow() renWin.SetWindowName('Cell3D Demonstration')  iRen = vtk.vtkRenderWindowInteractor() iRen.SetRenderWindow(renWin)  # Create one text property for all textProperty = vtk.vtkTextProperty() textProperty.SetFontSize(16) textProperty.SetJustificationToCentered()  # Create and link the mappers actors and renderers together. # 为每个独立的文本图形对象创建独立的Mapper和Actors,并绑定至每个grid中 for i in range(0, len(uGrids)):  textMappers.append(vtk.vtkTextMapper())  textActors.append(vtk.vtkActor2D())#   mappers.append(vtk.vtkDataSetMapper())  actors.append(vtk.vtkActor())  renderers.append(vtk.vtkRenderer())   mappers[i].SetInputData(uGrids[i])  actors[i].SetMapper(mappers[i])  actors[i].GetProperty().SetColor(   colors.GetColor3d("Seashell"))  renderers[i].AddViewProp(actors[i])   textMappers[i].SetInput(titles[i])  textMappers[i].SetTextProperty(textProperty)   textActors[i].SetMapper(textMappers[i])  textActors[i].SetPosition(120, 16)  renderers[i].AddViewProp(textActors[i])   renWin.AddRenderer(renderers[i])  gridDimensions = 3 rendererSize = 300  renWin.SetSize(rendererSize * gridDimensions,     rendererSize * gridDimensions)  # 渲染图形对象至不同的显示区域 for row in range(0, gridDimensions):  for col in range(0, gridDimensions):   index = row * gridDimensions + col    # (xmin, ymin, xmax, ymax)   viewport = [    float(col) * rendererSize /    (gridDimensions * rendererSize),    float(gridDimensions - (row + 1)) * rendererSize /    (gridDimensions * rendererSize),    float(col + 1) * rendererSize /    (gridDimensions * rendererSize),    float(gridDimensions - row) * rendererSize /    (gridDimensions * rendererSize)]    if index > len(actors) - 1:    # Add a renderer even if there is no actor.    # This makes the render window background all the same color.    ren = vtk.vtkRenderer()    ren.SetBackground(colors.GetColor3d("BkgColor"))    ren.SetViewport(viewport)    renWin.AddRenderer(ren)    continue    renderers[index].SetViewport(viewport)   renderers[index].SetBackground(colors.GetColor3d("BkgColor"))   renderers[index].ResetCamera()   renderers[index].GetActiveCamera().Azimuth(30)   renderers[index].GetActiveCamera().Elevation(-30)   renderers[index].GetActiveCamera().Zoom(0.85)   renderers[index].ResetCameraClippingRange()  iRen.Initialize() renWin.Render() iRen.Start()  def MakeHexagonalPrism(): """  3D: hexagonal prism: a wedge with an hexagonal base.  Be careful, the base face ordering is different from wedge. """  numberOfVertices = 12  points = vtk.vtkPoints()  points.InsertNextPoint(0.0, 0.0, 1.0) points.InsertNextPoint(1.0, 0.0, 1.0) points.InsertNextPoint(1.5, 0.5, 1.0) points.InsertNextPoint(1.0, 1.0, 1.0) points.InsertNextPoint(0.0, 1.0, 1.0) points.InsertNextPoint(-0.5, 0.5, 1.0)  points.InsertNextPoint(0.0, 0.0, 0.0) points.InsertNextPoint(1.0, 0.0, 0.0) points.InsertNextPoint(1.5, 0.5, 0.0) points.InsertNextPoint(1.0, 1.0, 0.0) points.InsertNextPoint(0.0, 1.0, 0.0) points.InsertNextPoint(-0.5, 0.5, 0.0)  hexagonalPrism = vtk.vtkHexagonalPrism() for i in range(0, numberOfVertices):  hexagonalPrism.GetPointIds().SetId(i, i)  ug = vtk.vtkUnstructuredGrid() ug.InsertNextCell(hexagonalPrism.GetCellType(),      hexagonalPrism.GetPointIds()) ug.SetPoints(points)  return ug  def MakeHexahedron(): """  A regular hexagon (cube) with all faces square and three squares around  each vertex is created below.  Setup the coordinates of eight points  (the two faces must be in counter clockwise  order as viewed from the outside).  As an exercise you can modify the coordinates of the points to create  seven topologically distinct convex hexahedras. """ numberOfVertices = 8  # Create the points points = vtk.vtkPoints() points.InsertNextPoint(0.0, 0.0, 0.0) points.InsertNextPoint(1.0, 0.0, 0.0) points.InsertNextPoint(1.0, 1.0, 0.0) points.InsertNextPoint(0.0, 1.0, 0.0) points.InsertNextPoint(0.0, 0.0, 1.0) points.InsertNextPoint(1.0, 0.0, 1.0) points.InsertNextPoint(1.0, 1.0, 1.0) points.InsertNextPoint(0.0, 1.0, 1.0)  # Create a hexahedron from the points hex_ = vtk.vtkHexahedron() for i in range(0, numberOfVertices):  hex_.GetPointIds().SetId(i, i)  # Add the points and hexahedron to an unstructured grid uGrid = vtk.vtkUnstructuredGrid() uGrid.SetPoints(points) uGrid.InsertNextCell(hex_.GetCellType(), hex_.GetPointIds())  return uGrid  def MakePentagonalPrism(): numberOfVertices = 10  # Create the points points = vtk.vtkPoints() points.InsertNextPoint(11, 10, 10) points.InsertNextPoint(13, 10, 10) points.InsertNextPoint(14, 12, 10) points.InsertNextPoint(12, 14, 10) points.InsertNextPoint(10, 12, 10) points.InsertNextPoint(11, 10, 14) points.InsertNextPoint(13, 10, 14) points.InsertNextPoint(14, 12, 14) points.InsertNextPoint(12, 14, 14) points.InsertNextPoint(10, 12, 14)  # Pentagonal Prism pentagonalPrism = vtk.vtkPentagonalPrism() for i in range(0, numberOfVertices):  pentagonalPrism.GetPointIds().SetId(i, i)  # Add the points and hexahedron to an unstructured grid uGrid = vtk.vtkUnstructuredGrid() uGrid.SetPoints(points) uGrid.InsertNextCell(pentagonalPrism.GetCellType(),       pentagonalPrism.GetPointIds())  return uGrid  def MakePolyhedron(): """  Make a regular dodecahedron. It consists of twelve regular pentagonal  faces with three faces meeting at each vertex. """ # numberOfVertices = 20 numberOfFaces = 12 # numberOfFaceVertices = 5  points = vtk.vtkPoints() points.InsertNextPoint(1.21412, 0, 1.58931) points.InsertNextPoint(0.375185, 1.1547, 1.58931) points.InsertNextPoint(-0.982247, 0.713644, 1.58931) points.InsertNextPoint(-0.982247, -0.713644, 1.58931) points.InsertNextPoint(0.375185, -1.1547, 1.58931) points.InsertNextPoint(1.96449, 0, 0.375185) points.InsertNextPoint(0.607062, 1.86835, 0.375185) points.InsertNextPoint(-1.58931, 1.1547, 0.375185) points.InsertNextPoint(-1.58931, -1.1547, 0.375185) points.InsertNextPoint(0.607062, -1.86835, 0.375185) points.InsertNextPoint(1.58931, 1.1547, -0.375185) points.InsertNextPoint(-0.607062, 1.86835, -0.375185) points.InsertNextPoint(-1.96449, 0, -0.375185) points.InsertNextPoint(-0.607062, -1.86835, -0.375185) points.InsertNextPoint(1.58931, -1.1547, -0.375185) points.InsertNextPoint(0.982247, 0.713644, -1.58931) points.InsertNextPoint(-0.375185, 1.1547, -1.58931) points.InsertNextPoint(-1.21412, 0, -1.58931) points.InsertNextPoint(-0.375185, -1.1547, -1.58931) points.InsertNextPoint(0.982247, -0.713644, -1.58931)  # Dimensions are [numberOfFaces][numberOfFaceVertices] dodechedronFace = [  [0, 1, 2, 3, 4],  [0, 5, 10, 6, 1],  [1, 6, 11, 7, 2],  [2, 7, 12, 8, 3],  [3, 8, 13, 9, 4],  [4, 9, 14, 5, 0],  [15, 10, 5, 14, 19],  [16, 11, 6, 10, 15],  [17, 12, 7, 11, 16],  [18, 13, 8, 12, 17],  [19, 14, 9, 13, 18],  [19, 18, 17, 16, 15] ]  dodechedronFacesIdList = vtk.vtkIdList() # Number faces that make up the cell. dodechedronFacesIdList.InsertNextId(numberOfFaces) for face in dodechedronFace:  # Number of points in the face == numberOfFaceVertices  dodechedronFacesIdList.InsertNextId(len(face))  # Insert the pointIds for that face.  [dodechedronFacesIdList.InsertNextId(i) for i in face]  uGrid = vtk.vtkUnstructuredGrid() uGrid.InsertNextCell(vtk.VTK_POLYHEDRON, dodechedronFacesIdList) uGrid.SetPoints(points)  return uGrid  def MakePyramid(): """  Make a regular square pyramid. """ numberOfVertices = 5  points = vtk.vtkPoints()  p = [  [1.0, 1.0, 0.0],  [-1.0, 1.0, 0.0],  [-1.0, -1.0, 0.0],  [1.0, -1.0, 0.0],  [0.0, 0.0, 1.0] ] for pt in p:  points.InsertNextPoint(pt)  pyramid = vtk.vtkPyramid() for i in range(0, numberOfVertices):  pyramid.GetPointIds().SetId(i, i)  ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(pyramid.GetCellType(), pyramid.GetPointIds())  return ug  def MakeTetrahedron(): """  Make a tetrahedron. """ numberOfVertices = 4  points = vtk.vtkPoints() points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(1, 0, 0) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(0, 1, 1)  tetra = vtk.vtkTetra() for i in range(0, numberOfVertices):  tetra.GetPointIds().SetId(i, i)  cellArray = vtk.vtkCellArray() cellArray.InsertNextCell(tetra)  unstructuredGrid = vtk.vtkUnstructuredGrid() unstructuredGrid.SetPoints(points) unstructuredGrid.SetCells(vtk.VTK_TETRA, cellArray)  return unstructuredGrid  def MakeVoxel(): """  A voxel is a representation of a regular grid in 3-D space. """ numberOfVertices = 8  points = vtk.vtkPoints() points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(1, 0, 0) points.InsertNextPoint(0, 1, 0) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(0, 0, 1) points.InsertNextPoint(1, 0, 1) points.InsertNextPoint(0, 1, 1) points.InsertNextPoint(1, 1, 1)  voxel = vtk.vtkVoxel() for i in range(0, numberOfVertices):  voxel.GetPointIds().SetId(i, i)  ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(voxel.GetCellType(), voxel.GetPointIds())  return ug  def MakeWedge(): """  A wedge consists of two triangular ends and three rectangular faces. """  numberOfVertices = 6  points = vtk.vtkPoints()  points.InsertNextPoint(0, 1, 0) points.InsertNextPoint(0, 0, 0) points.InsertNextPoint(0, .5, .5) points.InsertNextPoint(1, 1, 0) points.InsertNextPoint(1, 0.0, 0.0) points.InsertNextPoint(1, .5, .5)  wedge = vtk.vtkWedge() for i in range(0, numberOfVertices):  wedge.GetPointIds().SetId(i, i)  ug = vtk.vtkUnstructuredGrid() ug.SetPoints(points) ug.InsertNextCell(wedge.GetCellType(), wedge.GetPointIds())  return ug  def WritePNG(renWin, fn, magnification=1): """  Screenshot  Write out a png corresponding to the render window.  :param: renWin - the render window.  :param: fn - the file name.  :param: magnification - the magnification. """ windowToImageFilter = vtk.vtkWindowToImageFilter() windowToImageFilter.SetInput(renWin) windowToImageFilter.SetMagnification(magnification) # Record the alpha (transparency) channel # windowToImageFilter.SetInputBufferTypeToRGBA() windowToImageFilter.SetInputBufferTypeToRGB() # Read from the back buffer windowToImageFilter.ReadFrontBufferOff() windowToImageFilter.Update()  writer = vtk.vtkPNGWriter() writer.SetFileName(fn) writer.SetInputConnection(windowToImageFilter.GetOutputPort()) writer.Write()  if __name__ == '__main__': main()            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表