首页 > 编程 > Python > 正文

numpy判断数值类型、过滤出数值型数据的方法

2020-02-15 21:43:06
字体:
来源:转载
供稿:网友

numpy是无法直接判断出由数值与字符混合组成的数组中的数值型数据的,因为由数值类型和字符类型组成的numpy数组已经不是数值类型的数组了,而是dtype='<U11'。

1、math.isnan也不行,它只能判断float("nan"):

>>> import math >>> math.isnan(1) False >>> math.isnan('a') Traceback (most recent call last):  File "<stdin>", line 1, in <module> TypeError: a float is required >>> math.isnan(float("nan")) True >>> 

2、np.isnan不可用,因为np.isnan只能用于数值型与np.nan组成的numpy数组:

>>> import numpy as np >>> test1=np.array([1,2,'aa',3]) >>> np.isnan(test1) Traceback (most recent call last):  File "<stdin>", line 1, in <module> TypeError: ufunc 'isnan' not supported for the input types, and the inputs could  not be safely coerced to any supported types according to the casting rule ''sa fe'' >>> test2=np.array([1,2,np.nan,3]) >>> np.isnan(test2) array([False, False, True, False], dtype=bool) >>> 

解决办法:

方法1:将numpy数组转换为python的list,然后通过filter过滤出数值型的值,再转为numpy, 但是,有一个严重的问题,无法保证原来的索引

>>> import numpy as np >>> test1=np.array([1,2,'aa',3]) >>> list1=list(test1) >>> def filter_fun(x): ... try: ...  return isinstance(float(x),(float)) ... except: ...  return False ... >>> list(filter(filter_fun,list1)) ['1', '2', '3'] >>> np.array(filter(filter_fun,list1)) array(<filter object at 0x0339CA30>, dtype=object) >>> np.array(list(filter(filter_fun,list1))) array(['1', '2', '3'],  dtype='<U1') >>> np.array([float(x) for x in filter(filter_fun,list1)]) array([ 1., 2., 3.]) >>> 

方法2:利用map制作bool数组,然后再过滤数据和索引:

>>> import numpy as np>>> test1=np.array([1,2,'aa',3])>>> list1=list(test1)>>> def filter_fun(x):... try:...  return isinstance(float(x),(float))... except:...  return False...>>> import pandas as pd>>> test=pd.DataFrame(test1,index=[1,2,3,4])>>> test 01 12 23 aa4 3>>> index=test.index>>> indexInt64Index([1, 2, 3, 4], dtype='int64')>>> bool_index=map(filter_fun,list1)>>> bool_index=list(bool_index) #bool_index这样的迭代结果只能list一次,一次再list时会是空,所以保存一下list的结果>>> bool_index[True, True, False, True]>>> new_data=test1[np.array(bool_index)]>>> new_dataarray(['1', '2', '3'], dtype='<U11')>>> new_index=index[np.array(bool_index)]>>> new_indexInt64Index([1, 2, 4], dtype='int64')>>> test2=pd.DataFrame(new_data,index=new_index)>>> test2 01 12 24 3>>>            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表