本文将原始的numpy array数据在pytorch下封装为Dataset类的数据集,为后续深度网络训练提供数据。
加载并保存图像信息
首先导入需要的库,定义各种路径。
import osimport matplotlibfrom keras.datasets import mnistimport numpy as npfrom torch.utils.data.dataset import Datasetfrom PIL import Imageimport scipy.miscroot_path = 'E:/coding_ex/pytorch/Alexnet/data/'base_path = 'baseset/'training_path = 'trainingset/'test_path = 'testset/'
这里将数据集分为三类,baseset为所有数据(trainingset+testset),trainingset是训练集,testset是测试集。直接通过keras.dataset加载mnist数据集,不能自动下载的话可以手动下载.npz并保存至相应目录下。
def LoadData(root_path, base_path, training_path, test_path): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_baseset = np.concatenate((x_train, x_test)) y_baseset = np.concatenate((y_train, y_test)) train_num = len(x_train) test_num = len(x_test) #baseset file_img = open((os.path.join(root_path, base_path)+'baseset_img.txt'),'w') file_label = open((os.path.join(root_path, base_path)+'baseset_label.txt'),'w') for i in range(train_num + test_num): file_img.write(root_path + base_path + 'img/' + str(i) + '.png/n') #name file_label.write(str(y_baseset[i])+'/n') #label# scipy.misc.imsave(root_path + base_path + '/img/'+str(i) + '.png', x_baseset[i]) matplotlib.image.imsave(root_path + base_path + 'img/'+str(i) + '.png', x_baseset[i]) file_img.close() file_label.close() #trainingset file_img = open((os.path.join(root_path, training_path)+'trainingset_img.txt'),'w') file_label = open((os.path.join(root_path, training_path)+'trainingset_label.txt'),'w') for i in range(train_num): file_img.write(root_path + training_path + 'img/' + str(i) + '.png/n') #name file_label.write(str(y_train[i])+'/n') #label# scipy.misc.imsave(root_path + training_path + '/img/'+str(i) + '.png', x_train[i]) matplotlib.image.imsave(root_path + training_path + 'img/'+str(i) + '.png', x_train[i]) file_img.close() file_label.close() #testset file_img = open((os.path.join(root_path, test_path)+'testset_img.txt'),'w') file_label = open((os.path.join(root_path, test_path)+'testset_label.txt'),'w') for i in range(test_num): file_img.write(root_path + test_path + 'img/' + str(i) + '.png/n') #name file_label.write(str(y_test[i])+'/n') #label# scipy.misc.imsave(root_path + test_path + '/img/'+str(i) + '.png', x_test[i]) matplotlib.image.imsave(root_path + test_path + 'img/'+str(i) + '.png', x_test[i]) file_img.close() file_label.close()
使用这段代码时,需要建立相应的文件夹及.txt文件,./data文件夹结构如下:
/img文件夹
由于mnist数据集其实是灰度图,这里用matplotlib保存的图像是伪彩色图像。
新闻热点
疑难解答