首页 > 编程 > Python > 正文

解决Tensorflow sess.run导致的内存溢出问题

2020-02-15 21:23:38
字体:
来源:转载
供稿:网友

下面是调用模型进行批量测试的代码(出现溢出),开始以为导致溢出的原因是数据读入方式问题引起的,用了tf , PIL和cv等方式读入图片数据,发现越来越慢,内存占用飙升,调试时发现是sess.run这里出了问题(随着for循环进行速度越来越慢)。

  # Creates graph from saved GraphDef  create_graph(pb_path)   # Init tf Session  config = tf.ConfigProto()  config.gpu_options.allow_growth = True  sess = tf.Session(config=config)  init = tf.global_variables_initializer()  sess.run(init)    input_image_tensor = sess.graph.get_tensor_by_name("create_inputs/batch:0")   output_tensor_name = sess.graph.get_tensor_by_name("conv6/out_1:0")     for filename in os.listdir(image_dir):    image_path = os.path.join(image_dir, filename)     start = time.time()    image_data = cv2.imread(image_path)    image_data = cv2.resize(image_data, (w, h))    image_data_1 = image_data - IMG_MEAN    input_image = np.expand_dims(image_data_1, 0)     raw_output_up = tf.image.resize_bilinear(output_tensor_name, size=[h, w], align_corners=True)     raw_output_up = tf.argmax(raw_output_up, axis=3)         predict_img = sess.run(raw_output_up, feed_dict={input_image_tensor: input_image})    # 1,height,width    predict_img = np.squeeze(predict_img)   # height, width      voc_palette = visual.make_palette(3)    masked_im = visual.vis_seg(image_data, predict_img, voc_palette)    cv2.imwrite("%s_pred.png" % (save_dir + filename.split(".")[0]), masked_im)      print(time.time() - start)   print(">>>>>>Done")

下面是解决溢出问题的代码(将部分代码放在for循环外)

  # Creates graph from saved GraphDef  create_graph(pb_path)   # Init tf Session  config = tf.ConfigProto()  config.gpu_options.allow_growth = True  sess = tf.Session(config=config)  init = tf.global_variables_initializer()  sess.run(init)   input_image_tensor = sess.graph.get_tensor_by_name("create_inputs/batch:0")   output_tensor_name = sess.graph.get_tensor_by_name("conv6/out_1:0")   ##############################################################################################################  raw_output_up = tf.image.resize_bilinear(output_tensor_name, size=[h, w], align_corners=True)   raw_output_up = tf.argmax(raw_output_up, axis=3)##############################################################################################################   for filename in os.listdir(image_dir):    image_path = os.path.join(image_dir, filename)     start = time.time()    image_data = cv2.imread(image_path)    image_data = cv2.resize(image_data, (w, h))    image_data_1 = image_data - IMG_MEAN    input_image = np.expand_dims(image_data_1, 0)        predict_img = sess.run(raw_output_up, feed_dict={input_image_tensor: input_image})    # 1,height,width    predict_img = np.squeeze(predict_img)   # height, width      voc_palette = visual.make_palette(3)    masked_im = visual.vis_seg(image_data, predict_img, voc_palette)    cv2.imwrite("%s_pred.png" % (save_dir + filename.split(".")[0]), masked_im)    print(time.time() - start)   print(">>>>>>Done")            
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表