首页 > 编程 > Python > 正文

tensorflow 实现自定义梯度反向传播代码

2020-02-15 21:18:00
字体:
来源:转载
供稿:网友

以sign函数为例:

sign函数可以对数值进行二值化,但在梯度反向传播是不好处理,一般采用一个近似函数的梯度作为代替,如上图的Htanh。在[-1,1]直接梯度为1,其他为0。

#使用修饰器,建立梯度反向传播函数。其中op.input包含输入值、输出值,grad包含上层传来的梯度@tf.RegisterGradient("QuantizeGrad")def sign_grad(op, grad): input = op.inputs[0] cond = (input>=-1)&(input<=1) zeros = tf.zeros_like(grad) return tf.where(cond, grad, zeros) #使用with上下文管理器覆盖原始的sign梯度函数def binary(input): x = input with tf.get_default_graph().gradient_override_map({"Sign":'QuantizeGrad'}):  x = tf.sign(x) return x #使用x = binary(x)

以上这篇tensorflow 实现自定义梯度反向传播代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林站长站。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表