最近因为项目需求,需要写个爬虫爬取一些题库。在这之前爬虫我都是用node或者php写的。一直听说python写爬虫有一手,便入手了python的爬虫框架scrapy.
下面简单的介绍一下scrapy的目录结构与使用:
首先我们得安装scrapy框架
pip install scrapy
接着使用scrapy命令创建一个爬虫项目:
scrapy startproject questions
相关文件简介:
scrapy.cfg: 项目的配置文件
questions/: 该项目的python模块。之后您将在此加入代码。
questions/items.py: 项目中的item文件.
questions/pipelines.py: 项目中的pipelines文件.
questions/settings.py: 项目的设置文件.
questions/spiders/: 放置spider代码的目录.
questions/spiders/xueersi.py: 实现爬虫的主体代码.
xueersi.py 爬虫主体
# -*- coding: utf-8 -*-import scrapyimport timeimport numpyimport refrom questions.items import QuestionsItemclass xueersiSpider(scrapy.Spider): name = "xueersi" # 爬虫名字 allowed_domains = ["tiku.xueersi.com"] # 目标的域名 # 爬取的目标地址 start_urls = [ "http://tiku.xueersi.com/shiti/list_1_1_0_0_4_0_1", "http://tiku.xueersi.com/shiti/list_1_2_0_0_4_0_1", "http://tiku.xueersi.com/shiti/list_1_3_0_0_4_0_1", ] levels = ['偏易','中档','偏难'] subjects = ['英语','语文','数学'] # 爬虫开始的时候,自动调用该方法,如果该方法不存在会自动调用parse方法 # def start_requests(self): # yield scrapy.Request('http://tiku.xueersi.com/shiti/list_1_2_0_0_4_0_39',callback=self.getquestion) # start_requests方法不存在时,parse方法自动被调用 def parse(self, response): # xpath的选择器语法不多介绍,可以直接查看官方文档 arr = response.xpath("//ul[@class='pagination']/li/a/text()").extract() total_page = arr[3] # 获取分页 for index in range(int(total_page)): yield scrapy.Request(response.url.replace('_0_0_4_0_1',"_0_0_4_0_"+str(index)),callback=self.getquestion) # 发出新的请求,获取每个分页所有题目 # 获取题目 def getquestion(self,response): for res in response.xpath('//div[@class="main-wrap"]/ul[@class="items"]/li'): item = QuestionsItem() # 实例化Item类 # 获取问题 questions = res.xpath('./div[@class="content-area"]').re(r'<div class="content-area">?([/s/S]+?)<(table|//td|div|br)') if len(questions): # 获取题目 question = questions[0].strip() item['source'] = question dr = re.compile(r'<[^>]+>',re.S) question = dr.sub('',question) content = res.extract() item['content'] = question # 获取课目 subject = re.findall(ur'http:////tiku/.xueersi/.com//shiti//list_1_(/d+)',response.url) item['subject'] = self.subjects[int(subject[0])-1] # 获取难度等级 levels = res.xpath('//div[@class="info"]').re(ur'难度:([/s/S]+?)<') item['level'] = self.levels.index(levels[0])+1 # 获取选项 options = re.findall(ur'[A-D][/..]([/s/S]+?)<(//td|//p|br)',content) item['options'] = options if len(options): url = res.xpath('./div[@class="info"]/a/@href').extract()[0] request = scrapy.Request(url,callback=self.getanswer) request.meta['item'] = item # 缓存item数据,传递给下一个请求 yield request #for option in options: # 获取答案 def getanswer(self,response): res = response.xpath('//div[@class="part"]').re(ur'<td>([/s/S]+?)<//td>') con = re.findall(ur'([/s/S]+?)<br>[/s/S]+?([A-D])',res[0]) # 获取含有解析的答案 if con: answer = con[0][1] analysis = con[0][0] # 获取解析 else: answer = res[0] analysis = '' if answer: item = response.meta['item'] # 获取item item['answer'] = answer.strip() item['analysis'] = analysis.strip() item['answer_url'] = response.url yield item # 返回item,输出管道(pipelines.py)会自动接收该数据
新闻热点
疑难解答