首页 > 编程 > Python > 正文

Tensorflow 使用pb文件保存(恢复)模型计算图和参数实例详解

2020-02-15 21:15:47
字体:
来源:转载
供稿:网友

一、保存:

graph_util.convert_variables_to_constants 可以把当前session的计算图串行化成一个字节流(二进制),这个函数包含三个参数:参数1:当前活动的session,它含有各变量

参数2:GraphDef 对象,它描述了计算网络

参数3:Graph图中需要输出的节点的名称的列表

返回值:精简版的GraphDef 对象,包含了原始输入GraphDef和session的网络和变量信息,它的成员函数SerializeToString()可以把这些信息串行化为字节流,然后写入文件里:

constant_graph = graph_util.convert_variables_to_constants( sess, sess.graph_def , ['sum_operation'] )with open( pbName, mode='wb') as f:f.write(constant_graph.SerializeToString())

需要指出的是,如果原始张量(包含在参数1和参数2中的组成部分)不参与参数3指定的输出节点列表所指定的张量计算的话,这些张量将不会存在返回的GraphDef对象里,也不会被串行化写入pb文件。

二、恢复:

恢复时,创建一个GraphDef,然后从上述的文件里加载进来,接着输入到当前的session:

    graph0 = tf.GraphDef()    with open( pbName, mode='rb') as f:      graph0.ParseFromString( f.read() )      tf.import_graph_def( graph0 , name = '' )

三、代码:

 import tensorflow as tf from tensorflow.python.framework import graph_util pbName = 'graphA.pb'def graphCreate() :  with tf.Session() as sess :    var1 = tf.placeholder ( tf.int32 , name='var1' )     var2 = tf.Variable( 20 , name='var2' )#实参name='var2'指定了操作名,该操作返回的张量名是在                       #'var2'后面:0 ,即var2:0 是返回的张量名,也就是说变量                       # var2的名称是'var2:0'    var3 = tf.Variable( 30 , name='var3' )    var4 = tf.Variable( 40 , name='var4' )    var4op = tf.assign( var4 , 1000 , name = 'var4op1' )    sum = tf.Variable( 4, name='sum' )    sum = tf.add ( var1 , var2, name = 'var1_var2' )     sum = tf.add( sum , var3 , name='sum_var3' )    sumOps = tf.add( sum , var4 , name='sum_operation' )    oper = tf.get_default_graph().get_operations()    with open( 'operation.csv','wt' ) as f:      s = 'name,type,output/n'      f.write( s )       for o in oper:        s = o.name        s += ','+ o.type         inp = o.inputs        oup = o.outputs        for iip in inp :          s #s += ','+ str(iip)        for iop in oup :          s += ',' + str(iop)        s += '/n'        f.write( s )                for var in tf.global_variables():        print('variable=> ' , var.name) #张量是tf.Variable/tf.Add之类操作的结果,                        #张量的名字使用操作名加:0来表示    init = tf.global_variables_initializer()    sess.run( init )    sess.run( var4op )    print('sum_operation result is Tensor ' , sess.run( sumOps , feed_dict={var1:1}) )     constant_graph = graph_util.convert_variables_to_constants( sess, sess.graph_def , ['sum_operation'] )    with open( pbName, mode='wb') as f:      f.write(constant_graph.SerializeToString()) def graphGet() :  print("start get:" )  with tf.Graph().as_default():    graph0 = tf.GraphDef()    with open( pbName, mode='rb') as f:      graph0.ParseFromString( f.read() )      tf.import_graph_def( graph0 , name = '' )    with tf.Session() as sess :      init = tf.global_variables_initializer()      sess.run(init)      v1 = sess.graph.get_tensor_by_name('var1:0' )      v2 = sess.graph.get_tensor_by_name('var2:0' )      v3 = sess.graph.get_tensor_by_name('var3:0' )      v4 = sess.graph.get_tensor_by_name('var4:0' )            sumTensor = sess.graph.get_tensor_by_name("sum_operation:0")      print('sumTensor is : ' , sumTensor )      print( sess.run( sumTensor , feed_dict={v1:1} ) )   graphCreate()graphGet()              
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表