首页 > 编程 > C > 正文

C语言 扩展欧几里得算法代码

2020-01-26 15:55:20
字体:
来源:转载
供稿:网友

给定两个正整数m和n,我们计算它们的最大公因子d和两个整数a和b,使得a*m+b*n=d

算法流程
  E1.置a'=b=1;a=b'=0;c=m,d=n;

  E2.计算d和r,使得c=q*d+r;

  E3.若r==0;则退出,当前已有a*m+b*n=d;

  E4;c=d;d=r;t=a';a'=a;a=t-q*a;t=b';b'=b;b=t-q*b;返回E2.

证明

  对于已有的m和n,假设m>n;如果刨除变量a,b,a',b';算法与欧几里得算法完全一样,为计算最大公约数的算法.

  最终要求的为a*m+b*n=d=GCD(m,n);如果改式子成立由欧几里得算法可推出a'*n+b'*(m%n)=GCD(n,m%n);

  因为GCD(m,n)=GCD(n,m%n);

  所以a*m+b*n=a'*n+b'*(m%n)

        =a'*n+b'*(m-(m/n)*n)

        =a'*n+b'*m-b'*(m/n)*n

        =b'*m+(a'-b'*(m/n))*n

  所以a=b';b=a'-b'*(m/n);

  可以推出根据a‘、b'可以计算a、b。

代码实现

复制代码 代码如下:

void EGCD(int m,int n)
{
    int a,a1,b,b1,c,d,q,r,t;
    a1=b=1,a=b1=0,c=m,d=n;
    while(1)
    {
        q=c/d,r=c%d;
        if(r==0)
        {
            printf("(%d)*%d+(%d)*%d=%d/n",a,m,b,n,d);
            return;
        }
        c=d,d=r,t=a1,a1=a,a=t-q*a,t=b1,b1=b,b=t-q*b;
    }
}

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

图片精选