首页 > 编程 > C > 正文

opencv3.0识别并提取图形中的矩形的方法

2020-01-26 13:26:18
字体:
来源:转载
供稿:网友

利用opencv来识别图片中的矩形。 

其中遇到的问题主要是识别轮廓时矩形内部的形状导致轮廓不闭合。 

1. 对输入灰度图片进行高斯滤波 
2. 做灰度直方图,提取阈值,做二值化处理 
3. 提取图片轮廓 
4. 识别图片中的矩形 
5. 提取图片中的矩形

1.对输入灰度图片进行高斯滤波

  cv::Mat src = cv::imread("F://t13.bmp",CV_BGR2GRAY);  cv::Mat hsv;  GaussianBlur(src,hsv,cv::Size(5,5),0,0);

2.做灰度直方图,提取阈值,做二值化处理 

由于给定图片,背景是黑色,矩形背景色为灰色,矩形中有些其他形状为白色,可以参考为: 
提取轮廓时,矩形外部轮廓并未闭合。因此,我们需要对整幅图做灰度直方图,找到阈值,进行二值化

处理。即令像素值(黑色)小于阈值的,设置为0(纯黑色);令像素值(灰色和白色)大于阈值的,设

置为255(白色)

// Quantize the gray scale to 30 levels int gbins = 16; int histSize[] = {gbins};   // gray scale varies from 0 to 256 float granges[] = {0,256}; const float* ranges[] = { granges }; cv::MatND hist; // we compute the histogram from the 0-th and 1-st channels int channels[] = {0};  //calculate hist calcHist( &hsv, 1, channels, cv::Mat(), // do not use mask       hist, 1, histSize, ranges,       true, // the histogram is uniform       false ); //find the max value of hist double maxVal=0; minMaxLoc(hist, 0, &maxVal, 0, 0);  int scale = 20; cv::Mat histImg; histImg.create(500,gbins*scale,CV_8UC3);  //show gray scale of hist image for(int g=0;g<gbins;g++){   float binVal = hist.at<float>(g,0);   int intensity = cvRound(binVal*255);   rectangle( histImg, cv::Point(g*scale,0),             cv::Point((g+1)*scale - 1,binVal/maxVal*400),             CV_RGB(0,0,0),             CV_FILLED ); } cv::imshow("histImg",histImg);  //threshold processing cv::Mat hsvRe; threshold( hsv, hsvRe, 64, 255,cv::THRESH_BINARY); 

3.提取图片轮廓 

为了识别图片中的矩形,在识别之前还需要提取图片的轮廓。在经过滤波、二值化处理后,轮廓提取后的效果比未提取前的效果要好很多。

4.识别矩形 

识别矩形的条件为:图片中识别的轮廓是一个凸边形、有四个顶角、所有顶角的角度都为90度。 

vector<Point> approx;  for (size_t i = 0; i < contours.size(); i++) {   approxPolyDP(Mat(contours[i]), approx,           arcLength(Mat(contours[i]), true)*0.02, true);    if (approx.size() == 4 &&     fabs(contourArea(Mat(approx))) > 1000 &&     isContourConvex(Mat(approx)))   {     double maxCosine = 0;      for( int j = 2; j < 5; j++ )     {       double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));       maxCosine = MAX(maxCosine, cosine);     }      if( maxCosine < 0.3 )       squares.push_back(approx);   } } 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

图片精选