首页 > 编程 > C++ > 正文

opencv3/C++ PHash算法图像检索详解

2020-01-26 13:22:51
字体:
来源:转载
供稿:网友

PHash算法即感知哈希算法/Perceptual Hash algorithm,计算基于低频的均值哈希.对每张图像生成一个指纹字符串,通过对该字符串比较可以判断图像间的相似度.

PHash算法原理

将图像转为灰度图,然后将图片大小调整为32*32像素并通过DCT变换,取左上角的8*8像素区域。然后计算这64个像素的灰度值的均值。将每个像素的灰度值与均值对比,大于均值记为1,小于均值记为0,得到64位哈希值。

PHash算法实现

将图片转为灰度值

将图片尺寸缩小为32*32

resize(src, src, Size(32, 32));

DCT变换

 Mat srcDCT;  dct(src, srcDCT);

计算DCT左上角8*8像素区域均值,求hash值

 double sum = 0; for (int i = 0; i < 8; i++)  for (int j = 0; j < 8; j++)   sum += srcDCT.at<float>(i,j); double average = sum/64; Mat phashcode= Mat::zeros(Size(8, 8), CV_8U); for (int i = 0; i < 8; i++)  for (int j = 0; j < 8; j++)   phashcode.at<char>(i,j) = srcDCT.at<float>(i,j) > average ? 1:0;

hash值匹配

  int d = 0;  for (int n = 0; n < srchash.size[1]; n++)   if (srchash.at<uchar>(0,n) != dsthash.at<uchar>(0,n)) d++; 

即,计算两幅图哈希值之间的汉明距离,汉明距离越大,两图片越不相似。

OpenCV实现

如图在下图中对比各个图像与图person.jpg的汉明距离,以此衡量两图之间的额相似度。

#include <iostream> #include <stdio.h>#include <fstream>#include <io.h>#include <string>#include <opencv2/opencv.hpp> #include <opencv2/core/core.hpp>#include <opencv2/core/mat.hpp>using namespace std; using namespace cv; int fingerprint(Mat src, Mat* hash);int main(){ Mat src = imread("E://image//image//image//person.jpg", 0);  if(src.empty()) {  cout << "the image is not exist" << endl;   return -1; } Mat srchash, dsthash; fingerprint(src, &srchash); for(int i = 1; i <= 8; i++) {   string path0 = "E://image//image//image//person";  string number;   stringstream ss;   ss << i;   ss >> number;   string path = "E://image//image//image//person" + number +".jpg";   Mat dst = imread(path, 0);   if(dst.empty())  {   cout << "the image is not exist" << endl;    return -1;  }  fingerprint(dst, &dsthash);  int d = 0;  for (int n = 0; n < srchash.size[1]; n++)   if (srchash.at<uchar>(0,n) != dsthash.at<uchar>(0,n)) d++;   cout <<"person" << i <<" distance= " <<d<<"/n";  } system("pause"); return 0;}int fingerprint(Mat src, Mat* hash){ resize(src, src, Size(32, 32)); src.convertTo(src, CV_32F); Mat srcDCT;  dct(src, srcDCT); srcDCT = abs(srcDCT); double sum = 0; for (int i = 0; i < 8; i++)  for (int j = 0; j < 8; j++)   sum += srcDCT.at<float>(i,j); double average = sum/64; Mat phashcode= Mat::zeros(Size(8, 8), CV_8U); for (int i = 0; i < 8; i++)  for (int j = 0; j < 8; j++)   phashcode.at<char>(i,j) = srcDCT.at<float>(i,j) > average ? 1:0; *hash = phashcode.reshape(0,1).clone(); return 0;}

输出汉明距离:

可以看出若将阈值设置为20则可将后三张其他图片筛选掉。

以上这篇opencv3/C++ PHash算法图像检索详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表