本文实例分析了C#的各种排序算法。分享给大家供大家参考。具体分析如下:
首先通过图表比较不同排序算法的时间复杂度和稳定性。
排序方法 | 平均时间 | 最坏情况 | 最好情况 | 辅助空间 | 稳定性 |
直接插入排序 | O(n2) | O(n2) | O(n) | O(1) | 是 |
冒泡排序 | O(n2) | O(n2) | O(n) | O(1) | 是 |
简单选择排序 | O(n2) | O(n2) | O(n2) | O(1) | 是 |
希尔排序 | - | O(nlog2n)~O(n2) | O(nlog2n)~O(n2) | O(1) | 否 |
快速排序 | O(nlog2n) | O(n2) | O(nlog2n) | O(log2n) | 否 |
堆排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(1) | 否 |
2-路归并排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(n) | 是 |
基数排序 | O(d(n + rd)) | O(d(n + rd)) | O(d(n + rd)) | O(rd) | 是 |
1. 算法的时间复杂度一般情况下指最坏情况下的渐近时间复杂度。
2. 排序算法的稳定性会对多关键字排序产生影响。
下面通过C#代码说明不同的排序算法
插入排序
时间复杂度:平均情况―O(n2) 最坏情况―O(n2) 辅助空间:O(1) 稳定性:稳定
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
希尔排序(shell)
时间复杂度:理想情况―O(nlog2n) 最坏情况―O(n2) 稳定性:不稳定
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
冒泡排序
时间复杂度:平均情况―O(n2) 最坏情况―O(n2) 辅助空间:O(1) 稳定性:稳定
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
快速排序
时间复杂度:平均情况―O(nlog2n) 最坏情况―O(n2) 辅助空间:O(log2n) 稳定性:不稳定
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11, 现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。
void QSort(SqList &L, int low, int high) {
// 对顺序表L中的子序列L.r[low..high]进行快速排序
int pivotloc;
if (low < high) { // 长度大于1
pivotloc = Partition(L, low, high); // 将L.r[low..high]一分为二
QSort(L, low, pivotloc-1); // 对低子表递归排序,pivotloc是枢轴位置
QSort(L, pivotloc+1, high); // 对高子表递归排序
}
} // QSort
void QuickSort(SqList &L) {
// 对顺序表L进行快速排序
QSort(L, 1, L.length);
} // QuickSort
选择排序
时间复杂度:平均情况―O(n2) 最坏情况―O(n2) 辅助空间:O(1) 稳定性:不稳定
选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
堆排序
时间复杂度:平均情况―O(nlog2n) 最坏情况―O(nlog2n) 辅助空间:O(1) 稳定性:不稳定
我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法
归并排序
时间复杂度:平均情况―O(nlog2n) 最坏情况―O(nlog2n) 辅助空间:O(n) 稳定性:稳定
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。
希望本文所述对大家的C#程序设计有所帮助。
新闻热点
疑难解答