首页 > 编程 > Python > 正文

实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250

2020-01-04 17:49:37
字体:
来源:转载
供稿:网友
这篇文章主要介绍了实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250的过程,文中的环境基于Windows操作系统,需要的朋友可以参考下
 

安装部署Scrapy

在安装Scrapy前首先需要确定的是已经安装好了Python(目前Scrapy支持Python2.5,Python2.6和Python2.7)。官方文档中介绍了三种方法进行安装,我采用的是使用 easy_install 进行安装,首先是下载Windows版本的setuptools(下载地址:http://pypi.python.org/pypi/setuptools),下载完后一路NEXT就可以了。
安装完setuptool以后。执行CMD,然后运行一下命令:

easy_install -U Scrapy

同样的你可以选择使用pip安装,pip的地址:http://pypi.python.org/pypi/pip
使用pip安装Scrapy的命令为

pip install Scrapy

如果你的电脑先前装过visual studio 2008 或 visual studio 2010那么一起顺利,Scrapy已经安装完成。如果出现下列报错:Unable to find vcvarsall.bat 那么你需要折腾下。你可以安装visual studio 后进行安装或采用下面的方式进行解决:
首先安装MinGW(MinGW下载地址:http://sourceforge.net/projects/mingw/files/),在MinGW的安装目录下找到bin的文件夹,找到mingw32-make.exe,复制一份更名为make.exe;
把MinGW的路径添加到环境变量path中,比如我把MinGW安装到D:/MinGW/中,就把D:/MinGW/bin添加到path中;
打开命令行窗口,在命令行窗口中进入到要安装代码的目录下;
输入如下命令 setup.py install build –compiler=mingw32 就可以安装了。

如果出现“xslt-config' 不是内部或外部命令,也不是可运行的程序或批处理文件。”错误,原因主要是lxml安装不成功,只要上http://pypi.python.org/simple/lxml/下载个exe文件进行安装就可以了。
下面就可以进入正题了。

新建工程
让我们来用爬虫获取豆瓣电影Top 250的电影信息吧。开始之前,我们新建一个Scrapy工程。因为我用的Win7,所以在CMD中进入一个我希望保存代码的目录,然后执行:

D:/WEB/Python>scrapy startproject doubanmoive

这个命令会在当前目录下创建一个新的目录doubanmoive,目录结构如下:

D:/WEB/Python/doubanmoive>tree /fFolder PATH listing for volume DataVolume serial number is 00000200 34EC:9CB9D:.│ scrapy.cfg│└─doubanmoive │ items.py │ pipelines.py │ settings.py │ __init__.py │ └─spiders   __init__.py

这些文件主要为:

  • doubanmoive/items.py: 定义需要获取的内容字段,类似于实体类。
  • doubanmoive/pipelines.py: 项目管道文件,用来处理Spider抓取的数据。
  • doubanmoive/settings.py: 项目配置文件
  • doubanmoive/spiders: 放置spider的目录

定义项目(Item)

Item是用来装载抓取数据的容器,和Java里的实体类(Entity)比较像,打开doubanmoive/items.py可以看到默认创建了以下代码。

from scrapy.item import Item, Fieldclass DoubanmoiveItem(Item):  pass

我们只需要在 Doubanmoive 类中增加需要抓取的字段即可,如 name=Field() ,最后根据我们的需求完成代码如下。

from scrapy.item import Item, Fieldclass DoubanmoiveItem(Item): name=Field()#电影名 year=Field()#上映年份 score=Field()#豆瓣分数 director=Field()#导演 classification=Field()#分类 actor=Field()#演员

编写爬虫(Spider)

Spider是整个项目中最核心的类,在这个类里我们会定义抓取对象(域名、URL)以及抓取规则。Scrapy官方文档中的教程是基于 BaseSpider 的,但 BaseSpider 只能爬取给定的URL列表,无法根据一个初始的URL向外拓展。不过除了 BaseSpider ,还有很多可以直接继承 Spider 的类,比如 scrapy.contrib.spiders.CrawlSpider 。

在 doubanmoive/spiders 目录下新建moive_spider.py文件,并填写代码。

# -*- coding: utf-8 -*-from scrapy.selector import Selectorfrom scrapy.contrib.spiders import CrawlSpider,Rulefrom scrapy.contrib.linkextractors.sgml import SgmlLinkExtractorfrom doubanmoive.items import DoubanmoiveItemclass MoiveSpider(CrawlSpider): name="doubanmoive" allowed_domains=["movie.douban.com"] start_urls=["http://movie.douban.com/top250"] rules=[  Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/top250/?start=/d+.*'))),  Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/subject//d+')),callback="parse_item"),   ] def parse_item(self,response):  sel=Selector(response)  item=DoubanmoiveItem()  item['name']=sel.xpath('//*[@id="content"]/h1/span[1]/text()').extract()  item['year']=sel.xpath('//*[@id="content"]/h1/span[2]/text()').re(r'/((/d+)/)')  item['score']=sel.xpath('//*[@id="interest_sectl"]/div/p[1]/strong/text()').extract()  item['director']=sel.xpath('//*[@id="info"]/span[1]/a/text()').extract()  item['classification']= sel.xpath('//span[@property="v:genre"]/text()').extract()  item['actor']= sel.xpath('//*[@id="info"]/span[3]/a[1]/text()').extract()  return item

代码说明: MoiveSpider 继承Scrapy中的 CrawlSpider , name , allow_domains , start_url 看名字就知道什么含义,其中rules稍微复杂一些,定义了URL的抓取规则,符合 allow 正则表达式的链接都会加入到Scheduler(调度程序)。通过分析豆瓣电影Top250的分页URL http://movie.douban.com/top250?start=25&filter=&type= 可以得到以下规则

Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/top250/?start=/d+.*'))),
而我们真正要抓取的页面是每一个电影的详细介绍,如肖申克的救赎的链接为 http://movie.douban.com/subject/1292052/ ,那只有 subject 后面的数字是变化的,根据正则表达式得到如下代码。我们需要抓取这种类型链接中的内容,于是加入callback属性,将Response交给parse_item函数来处理。

Rule(SgmlLinkExtractor(allow=(r'http://movie.douban.com/subject//d+')),callback="parse_item"),      
在 parse_item 函数中的处理逻辑非常简单,获取符合条件链接的代码,然后根据一定的规则抓取内容赋给item并返回 Item Pipeline 。获取大部分标签的内容不需要编写复杂的正则表达式,我们可以使用 XPath 。 XPath 是一门在 XML 文档中查找信息的语言,但它也可以用在HTML中。下表列出了常用表达式。

 

表达式 描述
nodename 选取此节点的所有子节点。
/ 从根节点选取。
// 从匹配选择的当前节点选择文档中的节点,而不考虑它们的位置。
. 选取当前节点。
.. 选取当前节点的父节点。
@ 选取属性。

如 //*[@id="content"]/h1/span[1]/text() 获取的结果是在id为content的任意元素下h1元素下的span列表中第一个元素的文本内容。我们可以通过Chrome开发者工具(F12)来获取某内容的XPath表达式,具体操作为在需要抓取的内容上点击审查元素,下方就会出现开发者工具,并定位到该元素,在内容上点击右键,选择复制XPath。

 

实践Python的爬虫框架Scrapy来抓取豆瓣电影TOP250

存储数据

爬虫获取到数据以后我们需要将其存储到数据库中,之前我们提到该操作需要靠项目管道(pipeline)来处理,其通常执行的操作为:

  • 清洗HTML数据
  • 验证解析到的数据(检查项目是否包含必要的字段)
  • 检查是否是重复数据(如果重复就删除)
  • 将解析到的数据存储到数据库中

由于我们获取的数据格式多种多样,有一些存储在关系型数据库中并不方便,所以我在写完MySQL版本的Pipeline之后又写了一个MongoDB的。

MySQL版本: 

# -*- coding: utf-8 -*-from scrapy import logfrom twisted.enterprise import adbapifrom scrapy.http import Requestimport MySQLdbimport MySQLdb.cursorsclass DoubanmoivePipeline(object): def __init__(self):  self.dbpool = adbapi.ConnectionPool('MySQLdb',    db = 'python',    user = 'root',    passwd = 'root',    cursorclass = MySQLdb.cursors.DictCursor,    charset = 'utf8',    use_unicode = False  ) def process_item(self, item, spider):  query = self.dbpool.runInteraction(self._conditional_insert, item)  query.addErrback(self.handle_error)  return item def _conditional_insert(self,tx,item):  tx.execute("select * from doubanmoive where m_name= %s",(item['name'][0],))  result=tx.fetchone()  log.msg(result,level=log.DEBUG)  print result  if result:   log.msg("Item already stored in db:%s" % item,level=log.DEBUG)  else:   classification=actor=''   lenClassification=len(item['classification'])   lenActor=len(item['actor'])   for n in xrange(lenClassification):    classification+=item['classification'][n]    if n<lenClassification-1:     classification+='/'   for n in xrange(lenActor):    actor+=item['actor'][n]    if n<lenActor-1:     actor+='/'   tx.execute(/    "insert into doubanmoive (m_name,m_year,m_score,m_director,m_classification,m_actor) values (%s,%s,%s,%s,%s,%s)",/    (item['name'][0],item['year'][0],item['score'][0],item['director'][0],classification,actor))   log.msg("Item stored in db: %s" % item, level=log.DEBUG) def handle_error(self, e):  log.err(e)

MongoDB版本:

# -*- coding: utf-8 -*-import pymongofrom scrapy.exceptions import DropItemfrom scrapy.conf import settingsfrom scrapy import logclass MongoDBPipeline(object): #Connect to the MongoDB database def __init__(self):  connection = pymongo.Connection(settings['MONGODB_SERVER'], settings['MONGODB_PORT'])  db = connection[settings['MONGODB_DB']]  self.collection = db[settings['MONGODB_COLLECTION']] def process_item(self, item, spider):  #Remove invalid data  valid = True  for data in item:   if not data:   valid = False   raise DropItem("Missing %s of blogpost from %s" %(data, item['url']))  if valid:  #Insert data into database   new_moive=[{    "name":item['name'][0],    "year":item['year'][0],    "score":item['score'][0],    "director":item['director'],    "classification":item['classification'],    "actor":item['actor']   }]   self.collection.insert(new_moive)   log.msg("Item wrote to MongoDB database %s/%s" %   (settings['MONGODB_DB'], settings['MONGODB_COLLECTION']),   level=log.DEBUG, spider=spider)   return item

可以看到其基本的处理流程是一样,但是MySQL不太方便的一点就是需要将数组类型的数据通过分隔符转换。而MongoDB支持存入List、Dict等多种类型的数据。

配置文件

在运行爬虫之前还需要将在 settings.py 中增加一些配置信息。

BOT_NAME = 'doubanmoive'SPIDER_MODULES = ['doubanmoive.spiders']NEWSPIDER_MODULE = 'doubanmoive.spiders'ITEM_PIPELINES={ 'doubanmoive.mongo_pipelines.MongoDBPipeline':300, 'doubanmoive.pipelines.DoubanmoivePipeline':400,}LOG_LEVEL='DEBUG'DOWNLOAD_DELAY = 2RANDOMIZE_DOWNLOAD_DELAY = TrueUSER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.54 Safari/536.5'COOKIES_ENABLED = TrueMONGODB_SERVER = 'localhost'MONGODB_PORT = 27017MONGODB_DB = 'python'MONGODB_COLLECTION = 'test'

ITEM_PIPELINES 中定义了MySQL和MongoDB两个Pipeline文件,后面的数字代表执行的优先级顺序,范围为0~1000。 而中间的 DOWNLOAD_DELAY 等信息是为了防止爬虫被豆瓣Ban掉,增加了一些随机延迟,浏览器代理等。最后的就是MongoDB的配置信息,MySQL也可以参考这种方式来写。

至此为止,抓取豆瓣电影的爬虫就已经完成了。在命令行中执行 Scrapy crawl doubanmoive 让蜘蛛开始爬行吧!


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表