首页 > 编程 > Python > 正文

Python实现堆排序的方法详解

2020-01-04 17:30:05
字体:
来源:转载
供稿:网友
这篇文章主要介绍了Python实现堆排序的方法,结合实例形式详细分析了堆排序的原理,实现方法与相关注意事项,需要的朋友可以参考下
 

本文实例讲述了Python实现堆排序的方法。分享给大家供大家参考,具体如下:

堆排序作是基本排序方法的一种,类似于合并排序而不像插入排序,它的运行时间为O(nlogn),像插入排序而不像合并排序,它是一种原地排序算法,除了输入数组以外只占用常数个元素空间。

堆(定义):(二叉)堆数据结构是一个数组对象,可以视为一棵完全二叉树。如果根结点的值大于(小于)其它所有结点,并且它的左右子树也满足这样的性质,那么这个堆就是大(小)根堆。

我们假设某个堆由数组A表示,A[1]为树的根,给定某个结点的下标i,其父结点、左孩子、右孩子的下标都可以计算出来:

PARENT(i):
    return i/2
LEFT(i):
    return 2i
RIGHT(i):
    return 2i+1

Python,堆排序

堆排序Python实现

所谓堆排序的过程,就是把一些无序的对象,逐步建立起一个堆的过程。
下面是用Python实现的堆排序的代码:

def build_max_heap(to_build_list):  """建立一个堆"""  # 自底向上建堆  for i in range(len(to_build_list)/2 - 1, -1, -1):    max_heap(to_build_list, len(to_build_list), i)def max_heap(to_adjust_list, heap_size, index):  """调整列表中的元素以保证以index为根的堆是一个最大堆"""  # 将当前结点与其左右子节点比较,将较大的结点与当前结点交换,然后递归地调整子树  left_child = 2 * index + 1  right_child = left_child + 1  if left_child < heap_size and to_adjust_list[left_child] > to_adjust_list[index]:    largest = left_child  else:    largest = index  if right_child < heap_size and to_adjust_list[right_child] > to_adjust_list[largest]:    largest = right_child  if largest != index:    to_adjust_list[index], to_adjust_list[largest] = /    to_adjust_list[largest], to_adjust_list[index]    max_heap(to_adjust_list, heap_size, largest)def heap_sort(to_sort_list):  """堆排序"""  # 先将列表调整为堆  build_max_heap(to_sort_list)  heap_size = len(to_sort_list)  # 调整后列表的第一个元素就是这个列表中最大的元素,将其与最后一个元素交换,然后将剩余的列表再调整为最大堆  for i in range(len(to_sort_list) - 1, 0, -1):    to_sort_list[i], to_sort_list[0] = to_sort_list[0], to_sort_list[i]    heap_size -= 1    max_heap(to_sort_list, heap_size, 0)if __name__ == '__main__':  to_sort_list = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]  heap_sort(to_sort_list)  print to_sort_list

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表