首页 > 编程 > Python > 正文

利用Python破解验证码实例详解

2020-01-04 17:21:41
字体:
来源:转载
供稿:网友

一、前言

本实验将通过一个简单的例子来讲解破解验证码的原理,将学习和实践以下知识点:

      Python基本知识

      PIL模块的使用

二、实例详解

安装 pillow(PIL)库:

$ sudo apt-get update$ sudo apt-get install python-dev$ sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev /libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk$ sudo pip install pillow

下载实验用的文件:

$ wget http://labfile.oss.aliyuncs.com/courses/364/python_captcha.zip$ unzip python_captcha.zip$ cd python_captcha

这是我们实验使用的验证码 captcha.gif

python,验证码识别,破解数字验证码,python图片验证码识别

提取文本图片

在工作目录下新建 crack.py 文件,进行编辑。

#-*- coding:utf8 -*-from PIL import Imageim = Image.open("captcha.gif")#(将图片转换为8位像素模式)im = im.convert("P")#打印颜色直方图print im.histogram()

输出:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 , 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 132, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 15, 0 , 1, 0, 1, 0, 0, 8, 1, 0, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 18, 1, 1, 1, 1, 1, 2, 365, 115, 0, 1, 0, 0, 0, 135, 186, 0, 0, 1, 0, 0, 0, 116, 3, 0, 0, 0, 0, 0, 21, 1, 1, 0, 0, 0, 2, 10, 2, 0, 0, 0, 0, 2, 10, 0, 0, 0, 0, 1, 0, 625]

颜色直方图的每一位数字都代表了在图片中含有对应位的颜色的像素的数量。

每个像素点可表现256种颜色,你会发现白点是最多(白色序号255的位置,也就是最后一位,可以看到,有625个白色像素)。红像素在序号200左右,我们可以通过排序,得到有用的颜色。

his = im.histogram()values = {}for i in range(256): values[i] = his[i]for j,k in sorted(values.items(),key=lambda x:x[1],reverse = True)[:10]: print j,k

输出:

255 625212 365220 186219 135169 132227 116213 115234 21205 18184 15

我们得到了图片中最多的10种颜色,其中 220 与 227 才是我们需要的红色和灰色,可以通过这一讯息构造一种黑白二值图片。

#-*- coding:utf8 -*-from PIL import Imageim = Image.open("captcha.gif")im = im.convert("P")im2 = Image.new("P",im.size,255)for x in range(im.size[1]): for y in range(im.size[0]):  pix = im.getpixel((y,x))  if pix == 220 or pix == 227: # these are the numbers to get   im2.putpixel((y,x),0)im2.show()

得到的结果:

python,验证码识别,破解数字验证码,python图片验证码识别

提取单个字符图片

接下来的工作是要得到单个字符的像素集合,由于例子比较简单,我们对其进行纵向切割:

inletter = Falsefoundletter=Falsestart = 0end = 0letters = []for y in range(im2.size[0]):  for x in range(im2.size[1]):  pix = im2.getpixel((y,x))  if pix != 255:   inletter = True if foundletter == False and inletter == True:  foundletter = True  start = y if foundletter == True and inletter == False:  foundletter = False  end = y  letters.append((start,end)) inletter=Falseprint letters

输出:

[(6, 14), (15, 25), (27, 35), (37, 46), (48, 56), (57, 67)]

得到每个字符开始和结束的列序号。

import hashlibimport timecount = 0for letter in letters: m = hashlib.md5() im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] )) m.update("%s%s"%(time.time(),count)) im3.save("./%s.gif"%(m.hexdigest())) count += 1

(接上面的代码)

对图片进行切割,得到每个字符所在的那部分图片。

AI 与向量空间图像识别

在这里我们使用向量空间搜索引擎来做字符识别,它具有很多优点:

  1. 不需要大量的训练迭代
  2. 不会训练过度
  3. 你可以随时加入/移除错误的数据查看效果
  4. 很容易理解和编写成代码
  5. 提供分级结果,你可以查看最接近的多个匹配
  6. 对于无法识别的东西只要加入到搜索引擎中,马上就能识别了。

当然它也有缺点,例如分类的速度比神经网络慢很多,它不能找到自己的方法解决问题等等。

向量空间搜索引擎名字听上去很高大上其实原理很简单。拿文章里的例子来说:

你有 3 篇文档,我们要怎么计算它们之间的相似度呢?2 篇文档所使用的相同的单词越多,那这两篇文章就越相似!但是这单词太多怎么办,就由我们来选择几个关键单词,选择的单词又被称作特征,每一个特征就好比空间中的一个维度(x,y,z 等),一组特征就是一个矢量,每一个文档我们都能得到这么一个矢量,只要计算矢量之间的夹角就能得到文章的相似度了。

用 Python 类实现向量空间:

import mathclass VectorCompare: #计算矢量大小 def magnitude(self,concordance):  total = 0  for word,count in concordance.iteritems():   total += count ** 2  return math.sqrt(total) #计算矢量之间的 cos 值 def relation(self,concordance1, concordance2):  relevance = 0  topvalue = 0  for word, count in concordance1.iteritems():   if concordance2.has_key(word):    topvalue += count * concordance2[word]  return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))

它会比较两个 python 字典类型并输出它们的相似度(用 0~1 的数字表示)

将之前的内容放在一起

还有取大量验证码提取单个字符图片作为训练集合的工作,但只要是有好好读上文的同学就一定知道这些工作要怎么做,在这里就略去了。可以直接使用提供的训练集合来进行下面的操作。

iconset目录下放的是我们的训练集。

最后追加的内容:

#将图片转换为矢量def buildvector(im): d1 = {} count = 0 for i in im.getdata():  d1[count] = i  count += 1 return d1v = VectorCompare()iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']#加载训练集imageset = []for letter in iconset: for img in os.listdir('./iconset/%s/'%(letter)):  temp = []  if img != "Thumbs.db" and img != ".DS_Store":   temp.append(buildvector(Image.open("./iconset/%s/%s"%(letter,img))))  imageset.append({letter:temp})count = 0#对验证码图片进行切割for letter in letters: m = hashlib.md5() im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] )) guess = [] #将切割得到的验证码小片段与每个训练片段进行比较 for image in imageset:  for x,y in image.iteritems():   if len(y) != 0:    guess.append( ( v.relation(y[0],buildvector(im3)),x) ) guess.sort(reverse=True) print "",guess[0] count += 1

得到结果

一切准备就绪,运行我们的代码试试:

python crack.py

输出

(0.96376811594202894, '7')(0.96234028545977002, 's')(0.9286884286888929, '9')(0.98350370609844473, 't')(0.96751165072506273, '9')(0.96989711688772628, 'j')

是正解,干得漂亮。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表