本文实例讲述了Python实现的人工神经网络算法。分享给大家供大家参考,具体如下:
注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行。
本程序实现了《机器学习》书中所述的反向传播算法训练人工神经网络,理论部分请参考我的读书笔记。
在本程序中,目标函数是由一个输入x和两个输出y组成,
x是在范围【-3.14, 3.14】之间随机生成的实数,而两个y值分别对应 y1 = sin(x),y2 = 1。
随机生成一万份训练样例,经过网络的学习训练后,再用随机生成的五份测试数据验证训练结果。
调节算法的学习速率,以及隐藏层个数、隐藏层大小,训练新的网络,可以观察到参数对于学习结果的影响。
算法代码如下:
#!usr/bin/env python3# -*- coding:utf-8 -*-import numpy as npimport math# definition of sigmoid funtion# numpy.exp work for arrays.def sigmoid(x): return 1 / (1 + np.exp(-x))# definition of sigmoid derivative funtion# input must be sigmoid function's resultdef sigmoid_output_to_derivative(result): return result*(1-result)# init training setdef getTrainingSet(nameOfSet): setDict = { "sin": getSinSet(), } return setDict[nameOfSet]def getSinSet(): x = 6.2 * np.random.rand(1) - 3.14 x = x.reshape(1,1) # y = np.array([5 *x]).reshape(1,1) # y = np.array([math.sin(x)]).reshape(1,1) y = np.array([math.sin(x),1]).reshape(1,2) return x, ydef getW(synapse, delta): resultList = [] # 遍历隐藏层每个隐藏单元对每个输出的权值,比如8个隐藏单元,每个隐藏单元对两个输出各有2个权值 for i in range(synapse.shape[0]): resultList.append( (synapse[i,:] * delta).sum() ) resultArr = np.array(resultList).reshape(1, synapse.shape[0]) return resultArrdef getT(delta, layer): result = np.dot(layer.T, delta) return resultdef backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num): # 可行条件 if hidden_num < 1: print("隐藏层数不得小于1") return # 初始化网络权重矩阵,这个是核心 synapseList = [] # 输入层与隐含层1 synapseList.append(2*np.random.random((input_dim,hidden_dim)) - 1) # 隐含层1与隐含层2, 2->3,,,,,,n-1->n for i in range(hidden_num-1): synapseList.append(2*np.random.random((hidden_dim,hidden_dim)) - 1) # 隐含层n与输出层 synapseList.append(2*np.random.random((hidden_dim,output_dim)) - 1) iCount = 0 lastErrorMax = 99999 # while True: for i in range(10000): errorMax = 0 for x, y in trainingExamples: iCount += 1 layerList = [] # 正向传播 layerList.append( sigmoid(np.dot(x,synapseList[0])) ) for j in range(hidden_num): layerList.append( sigmoid(np.dot(layerList[-1],synapseList[j+1])) ) # 对于网络中的每个输出单元k,计算它的误差项 deltaList = [] layerOutputError = y - layerList[-1] # 收敛条件 errorMax = layerOutputError.sum() if layerOutputError.sum() > errorMax else errorMax deltaK = sigmoid_output_to_derivative(layerList[-1]) * layerOutputError deltaList.append(deltaK) iLength = len(synapseList) for j in range(hidden_num): w = getW(synapseList[iLength - 1 - j], deltaList[j]) delta = sigmoid_output_to_derivative(layerList[iLength - 2 - j]) * w deltaList.append(delta) # 更新每个网络权值w(ji) for j in range(len(synapseList)-1, 0, -1): t = getT(deltaList[iLength - 1 -j], layerList[j-1]) synapseList[j] = synapseList[j] + etah * t t = getT(deltaList[-1], x) synapseList[0] = synapseList[0] + etah * t print("最大输出误差:") print(errorMax) if abs(lastErrorMax - errorMax) < 0.0001: print("收敛了") print("####################") break lastErrorMax = errorMax # 测试训练好的网络 for i in range(5): xTest, yReal = getSinSet() layerTmp = sigmoid(np.dot(xTest,synapseList[0])) for j in range(1, len(synapseList), 1): layerTmp = sigmoid(np.dot(layerTmp,synapseList[j])) yTest = layerTmp print("x:") print(xTest) print("实际的y:") print(yReal) print("神经元网络输出的y:") print(yTest) print("最终输出误差:") print(np.abs(yReal - yTest)) print("#####################") print("迭代次数:") print(iCount)if __name__ == '__main__': import datetime tStart = datetime.datetime.now() # 使用什么样的训练样例 nameOfSet = "sin" x, y = getTrainingSet(nameOfSet) # setting of parameters # 这里设置了学习速率。 etah = 0.01 # 隐藏层数 hidden_num = 2 # 网络输入层的大小 input_dim = x.shape[1] # 隐含层的大小 hidden_dim = 100 # 输出层的大小 output_dim = y.shape[1] # 构建训练样例 trainingExamples = [] for i in range(10000): x, y = getTrainingSet(nameOfSet) trainingExamples.append((x, y)) # 开始用反向传播算法训练网络 backPropagation(trainingExamples, etah, input_dim, output_dim, hidden_dim, hidden_num) tEnd = datetime.datetime.now() print("time cost:") print(tEnd - tStart)
希望本文所述对大家Python程序设计有所帮助。
新闻热点
疑难解答