首页 > 编程 > Python > 正文

Python3 操作符重载方法示例

2020-01-04 16:16:27
字体:
来源:转载
供稿:网友

基础知识

实际上,“运算符重载”只是意味着在类方法中拦截内置的操作……当类的实例出现在内置操作中,Python自动调用你的方法,并且你的方法的返回值变成了相应操作的结果。以下是对重载的关键概念的复习:

  1. 运算符重载让类拦截常规的Python运算。
  2. 类可重载所有Python表达式运算符
  3. 类可以重载打印、函数调用、属性点号运算等内置运算
  4. 重载使类实例的行为像内置类型。
  5. 重载是通过特殊名称的类方法来实现的。

换句话说,当类中提供了某个特殊名称的方法,在该类的实例出现在它们相关的表达式时,Python自动调用它们。正如我们已经学习过的,运算符重载方法并非必须的,并且通常也不是默认的;如果你没有编写或继承一个运算符重载方法,只是意味着你的类不会支持相应的操作。然而,当使用的时候,这些方法允许类模拟内置对象的接口,因此表现得更一致。

 

以下代码以Python3.6.1为例

操作符重载方法: 类(class)通过使用特殊名称的方法(len(self))来实现被特殊语法(len())的调用

#coding=utf-8# specialfuns.py 操作符重载方法# 类(class)通过使用特殊名称的方法(__len__(self))来实现被特殊语法(len())的调用# 构造 与 析构 方法class demo1:  # 构造方法, 对象实例化时调用  def __init__(self):    print("构造方法")  # 析构方法, 对象被回收时调用  def __del__(self):    print("析构方法")# newclass demo2(object):  # __init__之前调用, 一般用于重写父类的__new__方法, 具体使用见 类 文章的 元类 代码部分(http://blog.csdn.net/rozol/article/details/69317339)  def __new__(cls):    print("new")    return object.__new__(cls)# 算术运算class demo3:  def __init__(self, num):    self.data = num  # +  def __add__(self, other):    return self.data + other.data  # -  def __sub__(self, other):    return self.data - other.data  # *  def __mul__(self, other):    return self.data * other.data  # /  def __truediv__(self, other):    return self.data / other.data  # //  def __floordiv__(self, other):    return self.data // other.data  # %  def __mod__(self, other):    return self.data % other.data  # divmod()  def __divmod__(self, other):    # 商(10/5),余数(10%5)    return self.data / other.data, self.data % other.data  # **  def __pow__(self, other):    return self.data ** other.data  # <<  def __lshift__(self, other):    return self.data << other.data  # >>  def __rshift__(self, other):    return self.data >> other.data  # &  def __and__(self, other):    return self.data & other.data  # ^  def __xor__(self, other):    return self.data ^ other.data  # |  def __or__(self, other):    return self.data | other.dataclass none:  def __init__(self, num):    self.data = num# 反算术运算符(a+b, 若a不支持算术运算符,则寻找b的算术运算符)(注:位置变换, 在原始函数名前+r)class demo4:  def __init__(self, num):    self.data = num  # +  def __radd__(self, other):    return other.data + self.data  # -  def __rsub__(self, other):    return other.data - self.data  # *  def __rmul__(self, other):    return other.data * self.data  # /  def __rtruediv__(self, other):    return other.data / self.data  # //  def __rfloordiv__(self, other):    return other.data // self.data  # %  def __rmod__(self, other):    return other.data % self.data  # divmod()  def __rdivmod__(self, other):    return other.data / self.data, other.data % self.data  # **  def __rpow__(self, other):    return other.data ** self.data  # <<  def __rlshift__(self, other):    return other.data << self.data  # >>  def __rrshift__(self, other):    return other.data >> self.data  # &  def __rand__(self, other):    return other.data & self.data  # ^  def __rxor__(self, other):    return other.data ^ self.data  # |  def __ror__(self, other):    return other.data | self.data# 增量赋值运算,(注:位置同原始函数,在原始函数名前+i)class demo5():  def __init__(self, num):    self.data = num  # +=  def __iadd__(self, other):    return self.data + other  # -=  def __isub__(self, other):    return self.data - other  # *=  def __imul__(self, other):    return self.data * other  # /=  def __itruediv__(self, other):    return self.data / other  # //=  def __ifloordiv__(self, other):    return self.data // other  # %=  def __imod__(self, other):    return self.data % other  # **=  def __ipow__(self, other):    return self.data ** other  # <<=  def __ilshift__(self, other):    return self.data << other  # >>=  def __irshift__(self, other):    return self.data >> other  # &=  def __iand__(self, other):    return self.data & other  # ^=  def __ixor__(self, other):    return self.data ^ other  # |=  def __ior__(self, other):    return self.data | other# 比较运算符class demo6:  def __init__(self, num):    self.data = num  # <  def __lt__(self, other):    return self.data < other.data  # <=  def __le__(self, other):    return self.data <= other.data  # ==  def __eq__(self, other):    return self.data == other.data  # !=  def __ne__(self, other):    return self.data != other.data  # >  def __gt__(self, other):    return self.data > other.data  # >=  def __ge__(self, other):    return self.data >= other.data# 一元操作符class demo7:  def __init__(self, num):    self.data = num  # + 正号  def __pos__(self):    return +abs(self.data)  # - 负号  def __neg__(self):    return -abs(self.data)  # abs() 绝对值  def __abs__(self):    return abs(self.data)  # ~ 按位取反  def __invert__(self):    return ~self.data  # complex() 字符转数字  def __complex__(self):    return 1+2j  # int() 转为整数  def __int__(self):    return 123  # float() 转为浮点数  def __float__(self):    return 1.23  # round() 近似值  def __round__(self):    return 1.123# 格式化class demo8:  # print() 打印  def __str__(self):    return "This is the demo."  # repr() 对象字符串表示  def __repr__(self):    return "This is a demo."  # bytes() 对象字节字符串表现形式  def __bytes__(self):    return b"This is one demo."  # format() 格式化  def __format__(self, format_spec):    return self.__str__()# 属性访问class demo9:  # 获取(不存在)属性  def __getattr__(self):    print ("访问的属性不存在")  # getattr() hasattr() 获取属性  def __getattribute__(self, attr):    print ("访问的属性是%s"%attr)    return attr  # setattr() 设置属性  def __setattr__(self, attr, value):    print ("设置 %s 属性值为 %s"%(attr, value))  # delattr() 删除属性  def __delattr__(self, attr):    print ("删除 %s 属性"%attr)# ===================================================================# 描述器(类(test1)的实例出现在属主类(runtest)中,这些方法才会调用)(注:函数调用,这些方法不会被调用)class test1:  def __init__(self, value = 1):    self.value = value * 2  def __set__(self, instance, value):    print("set %s %s %s"%(self, instance, value))    self.value = value * 2  def __get__(self, instance, owner):    print("get %s %s %s"%(self, instance, owner))    return self.value  def __delete__(self, instance):    print("delete %s %s"%(self, instance))    del self.valueclass test2:  def __init__(self, value = 1):    self.value = value + 0.3  def __set__(self, instance, value):    print("set %s %s %s"%(self, instance, value))    instance.t1 = value + 0.3  def __get__(self, instance, owner):    print("get %s %s %s"%(self, instance, owner))    return instance.t1  def __delete__(self, instance):    print("delete %s %s"%(self, instance))    del self.valueclass runtest:  t1 = test1()  t2 = test2()# ---# 自定义propertyclass property_my:  def __init__(self, fget=None, fset=None, fdel=None):    self.fget = fget    self.fset = fset    self.fdel = fdel  # 对象被获取(self自身, instance调用该对象的对象(demo9), owner调用该对象的对象类对象(demo9))  def __get__(self, instance, owner):    print("get %s %s %s"%(self, instance, owner))    return self.fget(instance)  # 对象被设置属性时  def __set__(self, instance, value):    print("set %s %s %s"%(self, instance, value))    self.fset(instance, value)  # 对象被删除时  def __delete__(self, instance):    print("delete %s %s"%(self, instance))    self.fdel(instance)class demo10:  def __init__(self):    self.num = None  def setvalue(self, value):    self.num = value  def getvalue(self):    return self.num  def delete(self):    del self.num  x = property_my(getvalue, setvalue, delete)# ===================================================================# 自定义容器class lis:  def __init__(self, *args):    self.lists = args    self.size = len(args)    self.startindex = 0    self.endindex = self.size  # len() 容器元素数量  def __len__(self):    return self.size;  # lis[1] 获取元素  def __getitem__(self, key = 0):    return self.lists[key]  # lis[1] = value 设置元素  def __setitem__(self, key, value):    pass  # del lis[1] 删除元素  def __delitem__(self, key):    pass  # 返回迭代器  def __iter__(self):    return self  # rversed() 反向迭代器  def __reversed__(self):    while self.endindex > 0:      self.endindex -= 1      yield self[self.endindex]  # next() 迭代器下个元素  def __next__(self):    if self.startindex >= self.size:      raise StopIteration # 控制迭代器结束    elem = self.lists[self.startindex]    self.startindex += 1    return elem  # in / not in  def __contains__(self, item):    for i in self.lists:      if i == item:        return True    return False# yield 生成器(执行一次返回,下次继续执行后续代码返回)def yielddemo():  num = 0  while 1: # 1 == True; 0 == False    if num >= 10:      raise StopIteration    num += 1    yield num# 能接收数据的生成器def yielddemo_1():  while 1:    num = yield    print(num)# with 自动上下文管理class withdemo:  def __init__(self, value):    self.value = value  # 返回值为 as 之后的值  def __enter__(self):    return self.value  # 执行完成,退出时的数据清理动作  def __exit__(self, exc_type, exc_value, traceback):    del self.valueif __name__ == "__main__":  # 构造与析构  d1 = demo1()  del d1  # new  d2 = demo2()  # 算术运算符  d3 = demo3(3)  d3_1 = demo3(5)  print(d3 + d3_1)  print(d3 - d3_1)  print(d3 * d3_1)  print(d3 / d3_1)  print(d3 // d3_1)  print(d3 % d3_1)  print(divmod(d3, d3_1))  print(d3 ** d3_1)  print(d3 << d3_1)  print(d3 >> d3_1)  print(d3 & d3_1)  print(d3 ^ d3_1)  print(d3 | d3_1)  # 反运算符  d4 = none(3)  d4_1 = demo4(5)  print(d4 + d4_1)  print(d4 - d4_1)  print(d4 * d4_1)  print(d4 / d4_1)  print(d4 // d4_1)  print(d4 % d4_1)  print(divmod(d4, d4_1))  print(d4 ** d4_1)  print(d4 << d4_1)  print(d4 >> d4_1)  print(d4 & d4_1)  print(d4 ^ d4_1)  print(d4 | d4_1)  # 增量赋值运算(测试时注释其他代码)  d5 = demo5(3)  d5 <<= 5  d5 >>= 5  d5 &= 5  d5 ^= 5  d5 |= 5  d5 += 5  d5 -= 5  d5 *= 5  d5 /= 5  d5 //= 5  d5 %= 5  d5 **= 5  print(d5)  # 比较运算符  d6 = demo6(3)  d6_1 = demo6(5)  print(d6 < d6_1)  print(d6 <= d6_1)  print(d6 == d6_1)  print(d6 != d6_1)  print(d6 > d6_1)  print(d6 >= d6_1)  # 一元操作符(测试时注释其他代码)  d7 = demo7(-5)  num = +d7  num = -d7  num = abs(d7)  num = ~d7  print(num)  print(complex(d7))  print(int(d7))  print(float(d7))  print(round(d7))  # 格式化  d8 = demo8()  print(d8)  print(repr(d8))  print(bytes(d8))  print(format(d8, ""))  # 属性访问  d9 = demo9()  setattr(d9, "a", 1) # => 设置 a 属性值为 1  print(getattr(d9, "a")) # => a / 访问的属性是a  print(hasattr(d9, "a")) # => True / 访问的属性是a  delattr(d9, "a") # 删除 a 属性  # ---  d9.x = 100 # => 设置 x 属性值为 100  print(d9.x) # => x / 访问的属性是x  del d9.x # => 删除 x 属性  # 描述器  r = runtest()  r.t1 = 100 # => <__main__.test1> <__main__.runtest> 100  print(r.t1) # => 200 / <__main__.test1> <__main__.runtest> <class '__main__.runtest'>  del r.t1 # => <__main__.test1> <__main__.runtest>  r.t2 = 200 # => <__main__.test2> <__main__.runtest> 200 / <__main__.test1> <__main__.runtest> 200.3  print(r.t2) # => 400.6 / <__main__.test2> <__main__.runtest> <class '__main__.runtest'> / <__main__.test1> <__main__.runtest> <class '__main__.runtest'>  del r.t2 # <__main__.test2> <__main__.runtest>  # ---  # 自定义property  d10 = demo10()  d10.x = 100; # => <__main__.property_my> <__main__.demo10> 100  print(d10.x) # => 100 / <__main__.property_my> <__main__.demo10> <class '__main__.demo10'>  del d10.x # => <__main__.property_my> <__main__.demo10>  d10.num = 200;  print(d10.num) # => 200  del d10.num  # 自定义容器(迭代器Iterator)  lis = lis(1,2,3,4,5,6)  print(len(lis))  print(lis[1])  print(next(lis))  print(next(lis))  print(next(lis))  for i in lis:    print (i)  for i in reversed(lis):    print (i)  print(3 in lis)  print(7 in lis)  print(3 not in lis)  print(7 not in lis)  # yield 生成器(可迭代对象Iterable)  for i in yielddemo():    print (i)  # ---  iters = iter(yielddemo())  print(next(iters))  print(next(iters))  # --- 发送数据给生成器 ---  iters = yielddemo_1()  next(iters)  iters.send(6) # 发送数据并执行  iters.send(10)  # with 自动上下文管理  with withdemo("Less is more!") as s:    print(s)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表